Multidimensional assignment problem: Difference between revisions

Content deleted Content added
Added cite
Undid revision 1127559408 by Herikabhatt (talk) that introduces irrelevant spam link
 
(22 intermediate revisions by 13 users not shown)
Line 1:
{{Short description|Generalization of linear assignment problem from two to multiple dimensions}}
{{Draft topics|stem}}
{{AfC topic|stem}}
{{AfC submission|||ts=20220216201948|u=As123321|ns=118}}
{{AFC submission|d|nn|u=COPknowledge|ns=118|decliner=Rusalkii|declinets=20220208220803|ts=20220208190802}} <!-- Do not remove this line! -->
{{promising draft}}
 
The '''multidimensional assignment problem''' (MAP) is a fundamental [[combinatorial optimization]] problem which was introduced by [[William Pierskalla]].<ref name="Pier68">{{cite journal |last=Pierskalla |first=William P. |title=Letter to the Editor—The Multidimensional Assignment Problem | journal=Operations Research 16(2) |publisher=INFORMS |date=1968 |volume=16 |issue=2 |pagepages=422-431422–431 |doi=10.1287/opre.16.2.422 |url=https://pubsonline.informs.org/doi/abs/10.1287/opre.16.2.422-access= }}</ref>. This problem can be seen as a generalization of the linear [[assignment problem]].<ref name="Pasi21">{{Cite arXiv|last1=Kammerdiner|first1=Alla|last2=Semenov|first2=Alexander|last3=Pasiliao|first3=Eduardo |date=2021|title=Multidimensional Assignment Problem for multipartite entity resolution|class=cs.DM |eprint=2112.03346}}</ref> In words, the problem can be described as follows:
 
 
The '''multidimensional assignment problem''' is a fundamental [[combinatorial optimization]] problem which was introduced by Pierskalla<ref name="Pier68">{{cite journal |last=Pierskalla |first=William P. |title=Letter to the Editor—The Multidimensional Assignment Problem | journal=Operations Research 16(2) |publisher=INFORMS |date=1968 |volume=16 |issue=2 |page=422-431 |doi=10.1287/opre.16.2.422 |url=https://pubsonline.informs.org/doi/abs/10.1287/opre.16.2.422}}</ref>. This problem can be seen as a generalization of the linear [[assignment problem]]. In words, the problem can be described as follows:
: An instance of the problem has a number of ''agents'' (i.e., ''cardinality'' parameter) and a number of ''job characteristics'' (i.e., ''dimensionality'' parameter) such as task, machine, time interval, etc. For example, an agent can be assigned to perform task X, on machine Y, during time interval Z. Any agent can be assigned to perform a job with any combination of unique job characteristics at some ''cost''. These costs may vary based on the assignment of agent to a combination of job characteristics - specific task, machine, time interval, etc. The problem is to minimize the ''total cost'' of assigning the agents so that the assignment of agents to each job characteristic is an [[injective function]], or [[one-to-one function]] from agents to a given job characteristic.
 
Alternatively, describing the problem using graph theory:
:The multidimensional assignment problem consists of finding, in a [[weighted graph|weighted]] [[multipartite graph]], a [[Matching (graph theory)|matching]] of a given size, in which the sum of weights of the edges is minimum.<ref>{{Cite journal|lastlast1=Natu|firstfirst1=Shardul|last2=Date|first2=Ketan|last3=Nagi|first3=Rakesh|date=2020|title=GPU-accelerated Lagrangian heuristic for multidimensional assignment problems with decomposable costs|url=http://dx.doi.org/10.1016/j.parco.2020.102666|journal=Parallel Computing|volume=97|pages=102666|doi=10.1016/j.parco.2020.102666|s2cid=221667518 |issn=0167-8191|doi-access=free}}</ref>
 
==Formal definition==
Line 19 ⟶ 12:
::<math>\sum_{a\in A}C(a,\pi_{1}(a),\ldots,\pi_{D-1}(a))</math>
 
is minimized.<ref>{{Cite journal|lastlast1=Karapetyan|firstfirst1=Daniel|last2=Gutin|first2=Gregory|date=2011-06-01|title=Local search heuristics for the multidimensional assignment problem|url=httpshttp://doirepository.orgessex.ac.uk/1022073/1/0806.1007/s10732-010-9133-33258v6.pdf|journal=Journal of Heuristics|language=en|volume=17|issue=3|pages=201–249|doi=10.1007/s10732-010-9133-3|s2cid=3446729 |issn=1572-9397}}</ref>
 
=== Problem parameters ===
The multidimensional assignment problem (MAP) has two key parameters that determine ''the size of a problem instance'':
# The '''[[dimension]]ality parameter''' <math>D</math>
# The '''[[cardinality]] parameter''' <math>N = |A|</math>, where <math>|A|</math> denotes the number of elements in <math>A</math>.
 
=== Size of cost array ===
Any problem instance of the MAP with parameters <math>D, N</math> has its specific '''cost array''' <math>C</math>, which consists of <math>N^{D}</math> instance-specific costs/weights parameters <math>C(a,a_1,\ldots,a_{D-1})</math>. <math>N^{D}</math> is the ''size'' of cost array.
 
=== Number of feasible solutions ===
The [[feasible region|feasible region or solution space]] of the MAP is very large. The number <math>K</math> of feasible solutions (the size of the MAP instance) depends on the MAP parameters <math>D, N</math>. Specifically, <math>K = (N!)^{D-1}</math>.<ref name="Pasi21" />
 
== Computational complexity ==
 
The problem is generally [[NP-hard]]. In other words, there is no known [[algorithm]] for solving this problem in polynomial time, and so a long computational time may be needed for solving problem instances of even moderate size (based on dimensionality and cardinality parameters).<ref>{{Cite journal|lastlast1=Nguyen|firstfirst1=Duc Manh|last2=Le Thi|first2=Hoai An|last3=Pham Dinh|first3=Tao|date=2012-10-12|title=Solving the Multidimensional Assignment Problem by a Cross-Entropy method|journal=Journal of Combinatorial Optimization|volume=27|issue=4|pages=808–823|doi=10.1007/s10878-012-9554-z|s2cid=254658376 |issn=1382-6905}}</ref>
 
== Applications ==
 
The problem found application in many domains:
*[[Scheduling (production processes)]] <ref name="Pier68" />
*[[Data fusion|Multi-sensor data fusion]] <ref>{{Cite journal|last=Poore|first=Aubrey B.|date=1994|title=Multidimensional assignment formulation of data association problems arising from multitarget and multisensor tracking|journal=Computational Optimization and Applications|volume=3|issue=1|pages=27-5727–57|doi=10.1007/BF01299390|s2cid=33848795 |doi-access=free}}</ref>
*[[Record linkage|Record linkage or multipartite entity resolution]] <ref>{{Cite arXiv|lastname=Kammerdiner|first=Alla|last2=Semenov|first2=Alexander|last3=Pasiliao|first3=Eduardo"Pasi21" |date=2021|title=Multidimensional Assignment Problem for multipartite entity resolution|eprint=2112.03346}}</ref>
*[[Particle physics|Elementary partcileparticle physics]] <ref>{{Cite journal|lastlast1=Pusztaszeri|firstfirst1=Jean-François|last2=Rensing|first2=Paul E.|last3=Liebling|first3=Thomas M.|date=1996|title=Tracking elementary particles near their primary vertex: a combinatorial approach|journal=Journal of Global Optimization|volume=9|issue=1|pages=41-6441–64|doi=10.1007/BF00121750|s2cid=2002168 }}</ref>
*[[Medical alarm|Fall detection in elderly with small wearable devices]]<ref>{{Cite journal|last1=Kammerdiner|first1=Alla R.|last2=Guererro|first2=Andre N.|date=2019|title=Data-driven combinatorial optimization for sensor-based assessment of near falls|url=http://link.springer.com/10.1007/s10479-017-2585-1|journal=Annals of Operations Research|language=en|volume=276|issue=1–2|pages=137–153|doi=10.1007/s10479-017-2585-1|s2cid=254223885 |issn=0254-5330|url-access=subscription}}</ref>
*[[Medical alarm|Fall detection in elderly with small wearable devices]]
 
 
== References ==
 
<!-- Inline citations added to your article will automatically display here. See en.wikipedia.org/wiki/WP:REFB for instructions on how to add citations. -->
{{reflist}}
 
[[Category:Combinatorial optimization]]