Modulus and characteristic of convexity: Difference between revisions

Content deleted Content added
m doi-access=free
m middot -> sdot per WP:⋅ (via WP:JWB)
 
(7 intermediate revisions by 6 users not shown)
Line 3:
==Definitions==
 
The '''modulus of convexity''' of a Banach space (''X'', ||&middotsdot;||) is the function {{nowrap|''δ'' : [0, 2] → [0, 1]}} defined by
 
:<math>\delta (\varepsilon) = \inf \left\{ 1 - \left\| \frac{x + y}{2} \right\| \,:\, x, y \in S, \| x - y \| \geq \varepsilon \right\},</math>
Line 17:
| first = Mahlon
| title = Uniform convexity in factor and conjugate spaces
| journal = Ann.Annals of Math.Mathematics |series = 2
| volume = 45
| year = 1944
Line 34:
* When ''X'' is uniformly convex, it admits an equivalent norm with power type modulus of convexity.<ref>see {{citation
| last=Pisier |first=Gilles |author-link=Gilles Pisier
| title= Martingales with values in uniformly convex spaces | journal=[[Israel J.Journal Math.of Mathematics]] | volume=20 | year=1975 | issue=3–4 | pages=326–350 | doi = 10.1007/BF02760337 | doi-access=free | mr=394135|s2cid=120947324 }}
.</ref> Namely, there exists {{nowrap|''q'' &ge; 2}} and a constant&nbsp;{{nowrap|''c'' &gt; 0}} such that
::<math>\delta(\varepsilon) \ge c \, \varepsilon^q, \quad \varepsilon \in [0, 2].</math>
 
==Modulus of convexity of the ''L''<mathsup>L^p''P''</mathsup> spaces==
 
The modulus of convexity is known for the ''L^p''<sup>''P''</sup> spaces.<ref>{{citation
| last = Hanner
| first = Olof
| title = On the uniform convexity of <math>L^p</math> and <math>\ell^p</math>
| journal = Arkiv för MathematikMatematik
| volume = 3
| year = 1955
Line 54:
:<math>\left(1-\delta_p(\varepsilon)+\frac{\varepsilon}{2}\right)^p+\left(1-\delta_p(\varepsilon)-\frac{\varepsilon}{2}\right)^p=2.
</math>
Knowing that <math>\delta_p(\varepsilon+)=0,</math> one can suppose that <math>\delta_p(\varepsilon)=a_0\varepsilon+a_1\varepsilon^2+\cdots</math>. Substituting this into the above, and expanding the left-hand-side as a [[Taylor series]] around <math>\varepsilon=0</math>, one can calculate the <math>a_i</math> coefficients:
:<math>\delta_p(\varepsilon)=\frac{p-1}{8}\varepsilon^2+\frac{1}{384}(3-10p+9p^2-2p^3)\varepsilon^4+\cdots.
</math>
Line 75:
| first = James
| title = Uniformly convex spaces
| journal = Trans.Transactions Amer.of Math.the Soc.American Mathematical Society
| volume = 40
| year = 1936
Line 85:
| doi-access = free
}}
* Fuster, Enrique Llorens. Some moduli and constants related to metric fixed point theory. ''Handbook of metric fixed point theory'', 133-175133–175, Kluwer Acad. Publ., Dordrecht, 2001. {{MR|1904276}}
* [[Joram Lindenstrauss|Lindenstrauss, Joram]] and Benyamini, Yoav. ''Geometric nonlinear functional analysis'' Colloquium publications, 48. American Mathematical Society.
*{{citation
Line 100:
| isbn = 3-540-08888-1
}}.
* [[Vitali Milman|Vitali D. Milman]]. Geometric theory of Banach spaces II. Geometry of the unit sphere. ''Uspechi Mat. Nauk,'' vol. 26, no. 6, 73-14973–149, 1971; ''Russian Math. Surveys'', v. 26 6, 80-15980–159.
 
{{Banach spaces}}
{{Functional analysis}}