Modulus and characteristic of convexity: Difference between revisions

Content deleted Content added
m [Pu331]+: jstor, issue, id, mr. Formatted dashes.
m middot -> sdot per WP:⋅ (via WP:JWB)
 
(38 intermediate revisions by 17 users not shown)
Line 1:
In [[mathematics]], the '''modulus of convexity''' and the '''characteristic of convexity''' are measures of "how [[convex set|convex]]" the [[unit ball]] in a [[Banach space]] is. In some sense, the modulus of convexity has the same relationship to the ''ε''-''δ'' definition of [[uniformly convex space|uniform convexity]] as the [[modulus of continuity]] does to the ''ε''-''δ'' definition of [[continuous function|continuity]].
 
==Definitions==
 
The '''modulus of convexity''' of a Banach space (''X'', ||&nbspsdot;||) is the function {{nowrap|''δ''  :  [0,  2]    [0,  1]}} defined by
 
:<math>\delta (\varepsilon) = \inf \left\{ \left. 1 - \left\| \frac{x + y}{2} \right\| \,:\, \right| x, y \in S, \| x - y \| \geq \varepsilon \right\},</math>
 
where ''S'' denotes the unit sphere of (''X'',&nbsp;||&nbsp;||). The In the definition of&nbsp;''δ'characteristic of convexity'(''ε''), ofone can as well take the spaceinfimum over all vectors (''Xx'', ''y'' in&nbsp;''X'' such that {{nowrap||ǁ''x''ǁ, ǁ''y''ǁ &nbsple; 1}} and {{nowrap||)ǁ''x'' is&minus; the''y''ǁ number&ge; ''ε''}}.<subref>0p.&nbsp;60 in {{harvtxt|Lindenstrauss|Tzafriri|1979}}.</subref> defined by
 
The '''characteristic of convexity''' of the space (''X'',&nbsp;||&nbsp;||) is the number ''ε''<sub>0</sub> defined by
:<math>\varepsilon_{0} = \sup \{ \varepsilon | \delta(\varepsilon) = 0 \}.</math>
 
:<math>\varepsilon_{0} = \sup \{ \varepsilon |\,:\, \delta(\varepsilon) = 0 \}.</math>
These notions are implicit in the general study of uniform convexity by J. A. Clarkson (see below; this is the same paper containing the statements of [[Clarkson's inequalities]]). The term "modulus of convexity" appears to be due to M. M. Day (see reference below).
 
These notions are implicit in the general study of uniform convexity by J. &nbsp;A. &nbsp;Clarkson (see below{{harvtxt|Clarkson|1936}}; this is the same paper containing the statements of [[Clarkson's inequalities]]). The term "modulus of convexity" appears to be due to M. &nbsp;M. &nbsp;Day (see reference below).<ref>{{citation
| last = Day
| first = Mahlon
| title = Uniform convexity in factor and conjugate spaces
| publisherjournal = Annals of Mathematics |series = 2
| volume = 45
| year = 1944
| pages = 375&ndash;385
| doi = 10.2307/1969275
| issue = 2
| jstor = 1969275
}}</ref>
 
==Properties==
* The modulus of convexity, ''δ''(''ε''), is a [[monotonic function|non-decreasing]] function of ''ε'', and the quotient {{nowrap|''δ''(''ε'')&thinsp;/&thinsp;''ε''}} is also non-decreasing on&nbsp;{{nowrap|(0, 2]}}.<ref>Lemma 1.e.8, p.&nbsp;66 in {{harvtxt|Lindenstrauss|Tzafriri|1979}}.</ref> The modulus of convexity need not itself be a [[convex function]] of&nbsp;''ε''.<ref>see Remarks, p.&nbsp;67 in {{harvtxt|Lindenstrauss|Tzafriri|1979}}.</ref> However, the modulus of convexity is equivalent to a convex function in the following sense:<ref>see Proposition 1.e.6, p.&nbsp;65 and Lemma 1.e.7, 1.e.8, p.&nbsp;66 in {{harvtxt|Lindenstrauss|Tzafriri|1979}}.</ref> there exists a convex function ''δ''<sub>1</sub>(''ε'') such that
::<math>\delta(\varepsilon / 2) \le \delta_1(\varepsilon) \le \delta(\varepsilon), \quad \varepsilon \in [0, 2].</math>
 
* The normed space {{nowrap|(''X'', ǁ&thinsp;&sdot;&thinsp;ǁ)}} is [[uniformly convex space|uniformly convex]] [[if and only if]] its characteristic of convexity ''ε''<sub>0</sub> is equal to&nbsp;0, ''i.e.'', if and only if {{nowrap|''δ''(''ε'') > 0}} for every&nbsp;{{nowrap|''ε'' > 0}}.
* The modulus of convexity, ''δ''(''ε''), is a [[monotonic function|non-decreasing]] function of ''ε''. (The modulus of convexity need not itself be a [[convex function]] of ''ε''.<ref>p. 67 in [[Lindenstrauss, Joram]]; Tzafriri, Lior, "Classical Banach spaces. II. Function spaces". ''Ergebnisse der Mathematik und ihrer Grenzgebiete'' [Results in Mathematics and Related Areas], 97. ''Springer-Verlag, Berlin-New York,'' 1979. x+243 pp.</ref>)
* The Banach space {{nowrap|(''X'', ǁ&nbspthinsp;||&nbspsdot;||&thinsp;ǁ)}} is a [[uniformlystrictly convex space]] [[(i.e., the boundary of the unit ball ''B'' contains no line segments) if and only if ''δ''(2)&nbsp;=&nbsp;1, ''i.e.'', if only [[antipodal point]]s its(of characteristicthe ofform convexity''x'' and ''εy''<sub>0</sub>&nbsp;=&nbsp;0&minus;''x'') of the unit sphere can have distance equal to&nbsp;2.
* When ''X'' is uniformly convex, it admits an equivalent norm with power type modulus of convexity.<ref>see {{citation
* (''X'',&nbsp;||&nbsp;||) is a [[strictly convex space]] (i.e., the boundary of the unit ball ''B'' contains no line segments) if and only if ''δ''(2)&nbsp;=&nbsp;1.
| last=Pisier |first=Gilles |author-link=Gilles Pisier
* {{ cite journal | last=Pisier |first=Gilles |authorlink=Gilles Pisier | title= Martingales with values in uniformly convex spaces | journal=[[Israel J.Journal Math.of Mathematics]] | volume=20 | year=1975 | issue=3–4 | pages=326–350 | doi = 10.1007/BF02760337 | urldoi-access=http://www.springerlink.com/content/y0176lm220h756k6 | idmr=394135|s2cid=120947324 | mr=394135}}
.</ref> Namely, there exists {{nowrap|''q'' &ge; 2}} and a constant&nbsp;{{nowrap|''c'' &gt; 0}} such that
::<math>\delta(\varepsilon) \ge c \, \varepsilon^q, \quad \varepsilon \in [0, 2].</math>
 
==Modulus of convexity of the ''L''<sup>''P''</sup> spaces==
==References==
 
The modulus of convexity is known for the ''L''<sup>''P''</sup> spaces.<ref>{{citation
| last = Hanner
| first = Olof
| title = On the uniform convexity of <math>L^p</math> and <math>\ell^p</math>
| journal = Ann.Arkiv Offör Math. (2)Matematik
| volume = 3
| year = 1955
| pages = 239–244
| doi = 10.1007/BF02589410
| doi-access = free
}}</ref> If <math>1<p\le2</math>, then it satisfies the following implicit equation:
 
:<math>\left(1-\delta_p(\varepsilon)+\frac{\varepsilon}{2}\right)^p+\left(1-\delta_p(\varepsilon)-\frac{\varepsilon}{2}\right)^p=2.
</math>
Knowing that <math>\delta_p(\varepsilon+)=0,</math> one can suppose that <math>\delta_p(\varepsilon)=a_0\varepsilon+a_1\varepsilon^2+\cdots</math>. Substituting this into the above, and expanding the left-hand-side as a [[Taylor series]] around <math>\varepsilon=0</math>, one can calculate the <math>a_i</math> coefficients:
:<math>\delta_p(\varepsilon)=\frac{p-1}{8}\varepsilon^2+\frac{1}{384}(3-10p+9p^2-2p^3)\varepsilon^4+\cdots.
</math>
 
For <math>2<p<\infty</math>, one has the explicit expression
:<math>\delta_p(\varepsilon)=1-\left(1-\left(\frac{\varepsilon}{2}\right)^p\right)^{\frac1p}.
</math>
Therefore, <math>\delta_p(\varepsilon)=\frac{1}{p2^p}\varepsilon^p+\cdots</math>.
 
== See also ==
*[[Uniformly smooth space]]
 
==Notes==
{{reflist}}
 
==References==
* {{cite book|author=Beauzamy, Bernard|title=Introduction to Banach Spaces and their Geometry|year=1985 [|orig-year=1982]|edition=Second revised|publisher=North-Holland|idmr={{MR|889253}}||isbn=04448641640-444-86416-4}}
 
*{{citation
* {{cite journal
| last = Clarkson
| first = James
| title = Uniformly convex spaces
| journal = Trans.Transactions Amer.of Math.the Soc.American Mathematical Society
| volume = 40
| year = 1936
Line 37 ⟶ 83:
| publisher = American Mathematical Society
| jstor = 1989630
| doi-access = free
}}
* Fuster, Enrique Llorens. Some moduli and constants related to metric fixed point theory. ''Handbook of metric fixed point theory'', 133-175133–175, Kluwer Acad. Publ., Dordrecht, 2001. {{MR|1904276}}
 
* {{cite journal
| last = Day
| first = Mahlon
| title = Uniform convexity in factor and conjugate spaces
| journal = Ann. Of Math. (2)
| volume = 45
| year = 1944
| pages = 375&ndash;385
| doi = 10.2307/1969275
| issue = 2
| publisher = Annals of Mathematics
| jstor = 1969275
}}
 
* Fuster, Enrique Llorens. Some moduli and constants related to metric fixed point theory. ''Handbook of metric fixed point theory'', 133-175, Kluwer Acad. Publ., Dordrecht, 2001. {{MR|1904276}}
 
* [[Joram Lindenstrauss|Lindenstrauss, Joram]] and Benyamini, Yoav. ''Geometric nonlinear functional analysis'' Colloquium publications, 48. American Mathematical Society.
*{{citation
| last1 = Lindenstrauss
| first1 = Joram | author1-link = Joram Lindenstrauss
| last2 = Tzafriri | first2 = Lior
| title = Classical Banach spaces. II. Function spaces
| series = Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]
| volume = 97
| publisher = Springer-Verlag
| ___location = Berlin-New York
| year = 1979
| pages = x+243
| isbn = 3-540-08888-1
}}.
* [[Vitali Milman|Vitali D. Milman]]. Geometric theory of Banach spaces II. Geometry of the unit sphere. ''Uspechi Mat. Nauk,'' vol. 26, no. 6, 73-14973–149, 1971; ''Russian Math. Surveys'', v. 26 6, 80-15980–159.
 
{{Banach spaces}}
* [[Vitali Milman|Vitali D. Milman]]. Geometric theory of Banach spaces II. Geometry of the unit sphere. ''Uspechi Mat. Nauk,'' vol. 26, no. 6, 73-149, 1971; ''Russian Math. Surveys'', v. 26 6, 80-159.
{{Functional analysis}}
 
* {{ cite journal | last=Pisier |first=Gilles |authorlink=Gilles Pisier | title= Martingales with values in uniformly convex spaces | journal=Israel J. Math. | volume=20 | year=1975 | issue=3–4 | pages=326–350 | doi = 10.1007/BF02760337 | url=http://www.springerlink.com/content/y0176lm220h756k6 | id=| | mr=394135}}
 
[[Category:Banach spaces]]