Modulus and characteristic of convexity: Difference between revisions

Content deleted Content added
m References: fixed reference
m middot -> sdot per WP:⋅ (via WP:JWB)
 
(19 intermediate revisions by 12 users not shown)
Line 3:
==Definitions==
 
The '''modulus of convexity''' of a Banach space (''X'', ||&nbspsdot;||) is the function {{nowrap|''δ'' : [0, 2] → [0, 1]}} defined by
 
:<math>\delta (\varepsilon) = \inf \left\{ 1 - \left\| \frac{x + y}{2} \right\| \,:\, x, y \in S, \| x - y \| \geq \varepsilon \right\},</math>
Line 17:
| first = Mahlon
| title = Uniform convexity in factor and conjugate spaces
| journal = Ann.Annals Ofof Mathematics |series = Math. (2)
| volume = 45
| year = 1944
Line 23:
| doi = 10.2307/1969275
| issue = 2
| publisher = Annals of Mathematics
| jstor = 1969275
}}</ref>
Line 34 ⟶ 33:
* The Banach space {{nowrap|(''X'', ǁ&thinsp;&sdot;&thinsp;ǁ)}} is a [[strictly convex space]] (i.e., the boundary of the unit ball ''B'' contains no line segments) if and only if ''δ''(2)&nbsp;=&nbsp;1, ''i.e.'', if only [[antipodal point]]s (of the form ''x'' and ''y''&nbsp;=&nbsp;&minus;''x'') of the unit sphere can have distance equal to&nbsp;2.
* When ''X'' is uniformly convex, it admits an equivalent norm with power type modulus of convexity.<ref>see {{citation
| last=Pisier |first=Gilles |authorlinkauthor-link=Gilles Pisier
| title= Martingales with values in uniformly convex spaces | journal=[[Israel J.Journal Math.of Mathematics]] | volume=20 | year=1975 | issue=3–4 | pages=326–350 | doi = 10.1007/BF02760337 | urldoi-access=http://www.springerlink.com/content/pwh1126545520581/ | mr=394135|s2cid=120947324 }}
.</ref> Namely, there exists {{nowrap|''q'' &ge; 2}} and a constant&nbsp;{{nowrap|''c'' &gt; 0}} such that
::<math>\delta(\varepsilon) \ge c \, \varepsilon^q, \quad \varepsilon \in [0, 2].</math>
 
==Modulus of convexity of the ''L''<sup>''P''</sup> spaces==
 
The modulus of convexity is known for the ''L''<sup>''P''</sup> spaces.<ref>{{citation
| last = Hanner
| first = Olof
| title = On the uniform convexity of <math>L^p</math> and <math>\ell^p</math>
| journal = Arkiv för Matematik
| volume = 3
| year = 1955
| pages = 239–244
| doi = 10.1007/BF02589410
| doi-access = free
}}</ref> If <math>1<p\le2</math>, then it satisfies the following implicit equation:
 
:<math>\left(1-\delta_p(\varepsilon)+\frac{\varepsilon}{2}\right)^p+\left(1-\delta_p(\varepsilon)-\frac{\varepsilon}{2}\right)^p=2.
</math>
Knowing that <math>\delta_p(\varepsilon+)=0,</math> one can suppose that <math>\delta_p(\varepsilon)=a_0\varepsilon+a_1\varepsilon^2+\cdots</math>. Substituting this into the above, and expanding the left-hand-side as a [[Taylor series]] around <math>\varepsilon=0</math>, one can calculate the <math>a_i</math> coefficients:
:<math>\delta_p(\varepsilon)=\frac{p-1}{8}\varepsilon^2+\frac{1}{384}(3-10p+9p^2-2p^3)\varepsilon^4+\cdots.
</math>
 
For <math>2<p<\infty</math>, one has the explicit expression
:<math>\delta_p(\varepsilon)=1-\left(1-\left(\frac{\varepsilon}{2}\right)^p\right)^{\frac1p}.
</math>
Therefore, <math>\delta_p(\varepsilon)=\frac{1}{p2^p}\varepsilon^p+\cdots</math>.
 
== See also ==
Line 46 ⟶ 70:
 
==References==
* {{cite book|author=Beauzamy, Bernard|title=Introduction to Banach Spaces and their Geometry|year=1985 |origyearorig-year=1982|edition=Second revised|publisher=North-Holland|mr=889253|isbn=0-444-86416-4}}
*{{citation
| last = Clarkson
| first = James
| title = Uniformly convex spaces
| journal = Trans.Transactions Amer.of Math.the Soc.American Mathematical Society
| volume = 40
| year = 1936
Line 59 ⟶ 83:
| publisher = American Mathematical Society
| jstor = 1989630
| doi-access = free
}}
* Fuster, Enrique Llorens. Some moduli and constants related to metric fixed point theory. ''Handbook of metric fixed point theory'', 133-175133–175, Kluwer Acad. Publ., Dordrecht, 2001. {{MR|1904276}}
* [[Joram Lindenstrauss|Lindenstrauss, Joram]] and Benyamini, Yoav. ''Geometric nonlinear functional analysis'' Colloquium publications, 48. American Mathematical Society.
*{{citation
Line 75 ⟶ 100:
| isbn = 3-540-08888-1
}}.
* [[Vitali Milman|Vitali D. Milman]]. Geometric theory of Banach spaces II. Geometry of the unit sphere. ''Uspechi Mat. Nauk,'' vol. 26, no. 6, 73-14973–149, 1971; ''Russian Math. Surveys'', v. 26 6, 80-15980–159.
 
{{Banach spaces}}
{{Functional analysis}}
 
[[Category:Banach spaces]]