Content deleted Content added
m added a line break to make the text a bit more readable |
tag as format footnotes |
||
(15 intermediate revisions by 10 users not shown) | |||
Line 1:
{{format footnotes |date=May 2024}}
In [[mathematics]], in particular in [[computer algebra|computational algebra]], the '''Berlekamp–Zassenhaus algorithm''' is an [[algorithm]] for factoring [[polynomial]]s over the [[integer]]s, named after [[Elwyn Berlekamp]] and [[Hans Zassenhaus]]. As a consequence of [[Gauss's lemma (number theory)|Gauss's lemma]], this amounts to solving the problem also over the rationals.
The algorithm starts by finding factorizations over suitable [[finite field]]s using [[Hensel's lemma]] to lift the solution from modulo a prime ''p'' to a convenient power of ''p''. After this the right factors are found as a subset of these.
The worst case of this algorithm is exponential in the number of factors.
==See also==▼
*[[Berlekamp's algorithm]]▼
==References==
*{{citation
| last = Berlekamp | first = E. R. | authorlink = Elwyn Berlekamp
| journal = [[Bell System Technical Journal]]
| mr = 0219231
| pages = 1853–1859
| title = Factoring polynomials over finite fields
| volume = 46
| year = 1967
| issue = 8 | doi=10.1002/j.1538-7305.1967.tb03174.x}}.
*{{citation
| last = Berlekamp | first = E. R. | authorlink = Elwyn Berlekamp
| doi = 10.2307/2004849
| journal = [[Mathematics of Computation]]
| jstor = 2004849
| mr = 0276200
| pages = 713–735
| title = Factoring polynomials over large finite fields
| volume = 24
| year = 1970| issue = 111 | doi-access = free
}}.
*{{citation
| last1 = Cantor | first1 = David G.
| last2 = Zassenhaus | first2 = Hans | author2-link = Hans Zassenhaus
| doi = 10.2307/2007663
| issue = 154
| journal = [[Mathematics of Computation]]
| jstor = 2007663
| mr = 606517
| pages = 587–592
| title = A new algorithm for factoring polynomials over finite fields
| volume = 36
| year = 1981| doi-access = free
}}.
*{{citation
| last1 = Geddes
| first1 = K. O.
| last2 = Czapor
| first2 = S. R.
| last3 = Labahn
| first3 = G.
| doi = 10.1007/b102438
| isbn = 0-7923-9259-0
| ___location = Boston, MA
| mr = 1256483
| publisher = Kluwer Academic Publishers
| title = Algorithms for computer algebra
| year = 1992
| bibcode = 1992afca.book.....G
| url-access = registration
| url = https://archive.org/details/algorithmsforcom0000gedd
}}.
*{{citation
| last = Van Hoeij | first = Mark
| doi = 10.1016/S0022-314X(01)92763-5
| issue = 2
| journal = [[Journal of Number Theory]]
| mr = 1924096
| pages = 167–189
| title = Factoring polynomials and the knapsack problem
| volume = 95
| year = 2002| doi-access = free
}}.
*{{citation
| last = Zassenhaus | first = Hans | authorlink = Hans Zassenhaus
| doi = 10.1016/0022-314X(69)90047-X
| journal = [[Journal of Number Theory]]
| mr = 0242793
| pages = 291–311
| title = On Hensel factorization. I
| volume = 1
| year = 1969| issue = 3 | bibcode = 1969JNT.....1..291Z | doi-access =
}}.
==External links==
*{{mathworld|id=Berlekamp-ZassenhausAlgorithm|title=Berlekamp-Zassenhaus Algorithm|author=Domazet, Haris}}
▲==See also==
▲*[[Berlekamp's algorithm]]
[[Category:Computer algebra]]
|