Content deleted Content added
context tag. "Let q, n, r be integers." is not a proper way for a Wikipedia article to start. |
Formatting |
||
(35 intermediate revisions by 28 users not shown) | |||
Line 1:
In [[coding theory]], a '''covering code''' is a set of elements (called ''codewords'') in a space, with the property that every element of the space is within a fixed distance of some codeword.
== Definition ==
Let <math>q\geq 2</math>, <math>n\geq 1</math>, <math>R\geq 0</math> be [[integers]].
A [[code]] <math>C\subseteq Q^n</math> over an [[alphabet]] ''Q'' of size |''Q''| = ''q'' is called
''q''-ary
if for every word <math>y\in Q^n</math> there is a [[Code word (communication)|codeword]] <math>x\in C</math>
such that the [[Hamming distance]] <math>d_H(x,y)\leq R</math>.
In other words, the [[spheres]] (or [[ball (mathematics)|balls]] or
with respect to the Hamming [[Metric (mathematics)|metric]] around the codewords of ''C'' have to exhaust
the [[Wikt:finite|finite]] [[metric space]] <math>Q^n</math>.
The [[covering radius]] of a code ''C'' is the smallest ''R'' such that ''C'' is ''R''-covering.
Every [[perfect code]] is a covering code of minimal size.
== Example ==
''C'' =
== Covering problem ==
The
Every construction of a covering code gives an upper bound on
▲Every construction of a covering code gives an upper bound on K_q(n,R).
Lower bounds include the sphere covering bound and
The covering problem is closely related to the packing problem in <math>Q^n</math>, i.e. the determination of the maximal size of a ''q''-ary ''e''-[[
== Football pools problem ==
A particular case is the '''football pools problem''', based on [[football pool]] betting, where the aim is to come up with a betting system over ''n'' football matches that, regardless of the outcome, has at most ''R'' 'misses'. Thus, for ''n'' matches with at most one 'miss', a ternary covering, ''K''<sub>3</sub>(''n'',1), is sought.
If <math>n=\tfrac12 (3^k-1)</math> then 3<sup>''n''-''k''</sup> are needed, so for ''n'' = 4, ''k'' = 2, 9 are needed; for ''n'' = 13, ''k'' = 3, 59049 are needed.<ref>{{cite journal |last1=Kamps |first1=H.J.L. |last2=van Lint |first2=J.H. |title=The football pool problem for 5 matches |journal=Journal of Combinatorial Theory |date=December 1967 |volume=3 |issue=4 |pages=315–325 |doi=10.1016/S0021-9800(67)80102-9 |url=http://alexandria.tue.nl/repository/freearticles/593454.pdf |access-date=9 November 2022 |language=en}}</ref> The best bounds known as of 2011<ref>{{cite web |title=Bounds on K3(n, R) (lower and upper bounds on the size of ternary optimal covering codes) |url=http://old.sztaki.hu/~keri/codes/3_tables.pdf |website=SZÁMÍTÁSTECHNIKAI ÉS AUTOMATIZÁLÁSI KUTATÓINTÉZET |access-date=9 November 2022 |archive-url=https://web.archive.org/web/20221027203847/http://old.sztaki.hu/~keri/codes/3_tables.pdf |archive-date=27 October 2022 |language=en |url-status=live}}</ref> are
{| class="wikitable" style="text-align:center;"
! ''n''
! | 1
! | 2
! | 3
! | 4
! | 5
! | 6
! | 7
! | 8
! | 9
! | 10
! | 11
! | 12
! | 13
! | 14
|-
! ''K''<sub>3</sub>(''n'',1)
| '''1'''
| '''3'''
| '''5'''
| '''9'''
| '''27'''
| 71-73
| 156-186
| 402-486
| 1060-1269
| 2854-3645
| 7832-9477
| 21531-27702
| '''59049'''
| 166610-177147
|-
! ''K''<sub>3</sub>(''n'',2)
|
| '''1'''
| '''3'''
| '''3'''
| '''8'''
|15-17
| 26-34
| 54-81
| 130-219
| 323-555
| [[Ternary Golay code|'''729''']]
| 1919-2187
| 5062-6561
| 12204-19683
|-
! ''K''<sub>3</sub>(''n'',3)
|
|
| '''1'''
| '''3'''
| '''3'''
| '''6'''
| 11-12
| 14-27
| 27-54
| 57-105
| 117-243
| 282-657
| 612-1215
| 1553-2187
|}
== Applications ==
The standard work<ref>{{cite book |author=G. Cohen, I. Honkala, S. Litsyn, A. Lobstein
*
*[[Data compression]]
*[[Code|Decoding]] errors and erasures
*[[Broadcasting]] in interconnection networks
*[[Football pools]]<ref>{{cite journal |author=H. Hämäläinen, I. Honkala, S. Litsyn, P.R.J. Östergård
*Write-once memories
*Berlekamp-Gale game
*[[Speech coding]]
*Cellular [[telecommunications]]
*[[Subset]] sums and [[
==References==
{{reflist|colwidth=30em}}
== External links ==
* [http://www.infres.enst.fr/~lobstein/biblio.html Literature on covering codes]
* [http://www.sztaki.hu/~keri/codes/index.htm Bounds on <math>K_q(n,R)</math>]
[[Category:Coding theory]]
|