Simulation-based optimization: Difference between revisions

Content deleted Content added
m remove nowiki
 
(4 intermediate revisions by 3 users not shown)
Line 1:
'''Simulation-based optimization''' (also known as simply '''simulation optimization''') integrates [[optimization (mathematics)|optimization]] techniques into [[computer simulation|simulation]] modeling and analysis. Because of the complexity of the simulation, the [[objective function]] may become difficult and expensive to evaluate. Usually, the underlying simulation model is stochastic, so that the objective function must be estimated using statistical estimation techniques (called output analysis in simulation methodology).
 
Once a system is mathematically modeled, computer-based simulations provide information about its behavior. Parametric simulation methods can be used to improve the performance of a system. In this method, the input of each variable is varied with other parameters remaining constant and the effect on the design objective is observed. This is a time-consuming method and improves the performance partially. To obtain the optimal solution with minimum computation and time, the problem is solved iteratively where in each iteration the solution moves closer to the optimum solution. Such methods are known as ‘numerical optimization’ or, ‘simulation-based optimization’.<ref>Nguyen, Anh-Tuan, Sigrid Reiter, and Philippe Rigo. "[https://orbi.uliege.be/bitstream/2268/155988/1/Nguyen%20AT.pdf A review on simulation-based optimization methods applied to building performance analysis]."''Applied Energy'' 113 (2014): 1043–1058.</ref> or 'simulation-based multi-objective optimization' used when more than one objective is involved.
 
In simulation experiment, the goal is to evaluate the effect of different values of input variables on a system. However, the interest is sometimes in finding the optimal value for input variables in terms of the system outcomes. One way could be running simulation experiments for all possible input variables. However, this approach is not always practical due to several possible situations and it just makes it intractable to run experiments for each scenario. For example, there might be too many possible values for input variables, or the simulation model might be too complicated and expensive to run for suboptimala large set of input variable values. In these cases, the goal is to iterative find optimal values for the input variables rather than trying all possible values. This process is called simulation optimization.<ref>Carson, Yolanda, and Anu Maria. "[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.9192&rep=rep1&type=pdf Simulation optimization: methods and applications]." ''Proceedings of the 29th Winter Simulation Conference''. IEEE Computer Society, 1997.</ref>
 
Specific simulation–based optimization methods can be chosen according to Figure 1 based on the decision variable types.<ref>Jalali, Hamed, and Inneke Van Nieuwenhuyse. "[https://core.ac.uk/download/pdf/34623919.pdf Simulation optimization in inventory replenishment: a classification]." IIE Transactions 47.11 (2015): 1217-1235.</ref>
Line 23:
In the simulation optimization setting, applicable methods include indifference zone approaches, optimal computing budget allocation, and knowledge gradient algorithms.
 
=== Response surface methodo<nowiki/>logymethodology (RSM)===
In [[response surface methodology]], the objective is to find the relationship between the input variables and the response variables. The process starts from trying to fit a linear regression model. If the P-value turns out to be low, then a higher degree polynomial regression, which is usually quadratic, will be implemented. The process of finding a good relationship between input and response variables will be done for each simulation test. In simulation optimization, response surface method can be used to find the best input variables that produce desired outcomes in terms of response variables.<ref>Rahimi Mazrae Shahi, M., Fallah Mehdipour, E. and Amiri, M. (2016), [https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12150 Optimization using simulation and response surface methodology with an application on subway train scheduling]. Intl. Trans. in Op. Res., 23: 797–811. {{doi|10.1111/itor.12150}}</ref>
 
Line 43:
 
=== Derivative-free optimization methods ===
[[Derivative-free optimization]] is a subject of mathematical optimization. This method is applied to a certain optimization problem when its derivatives are unavailable or unreliable. Derivative-free methods establish a model based on sample function values or directly draw a sample set of function values without exploiting a detailed model. Since it needs no derivatives, it cannot be compared to derivative-based methods.<ref>Conn, A. R.; [[Katya Scheinberg|Scheinberg, K.]]; [[Luis Nunes Vicente|Vicente, L. N.]] (2009). [http://www.mat.uc.pt/~lnv/idfo/ ''Introduction to Derivative-Free Optimization'']. MPS-SIAM Book Series on Optimization. Philadelphia: SIAM. Retrieved 2014-01-18.</ref>
 
For unconstrained optimization problems, it has the form: