Frank–Wolfe algorithm: Difference between revisions

Content deleted Content added
The direction-finding subproblem and the update rule did not comply with each other. Either x_k +s in D in the subproblem and x_k+1 <-- x_k + \alpha s in the update or s in D in the subproblem and x_k+1 <-- x_k + \alpha (s - x_k) in the update are used. See Jaggi (2013)
 
(9 intermediate revisions by 9 users not shown)
Line 1:
{{Short description|Optimization algorithm}}
The '''Frank–Wolfe algorithm''' is an [[iterative method|iterative]] [[First-order approximation|first-order]] [[Mathematical optimization|optimization]] [[algorithm]] for [[constrained optimization|constrained]] [[convex optimization]]. Also known as the '''conditional gradient method''',<ref>{{Cite journal | last1 = Levitin | first1 = E. S. | last2 = Polyak | first2 = B. T. | doi = 10.1016/0041-5553(66)90114-5 | title = Constrained minimization methods | journal = USSR Computational Mathematics and Mathematical Physics | volume = 6 | issue = 5 | pages = 1 | year = 1966 }}</ref> '''reduced gradient algorithm''' and the '''convex combination algorithm''', the method was originally proposed by [[Marguerite Frank]] and [[Philip Wolfe (mathematician)|Philip Wolfe]] in&nbsp;1956.<ref>{{Cite journal | last1 = Frank | first1 = M. | last2 = Wolfe | first2 = P. | doi = 10.1002/nav.3800030109 | title = An algorithm for quadratic programming | journal = Naval Research Logistics Quarterly | volume = 3 | issue = 1–2 | pages = 95–110 | year = 1956 }}</ref> In each iteration, the Frank–Wolfe algorithm considers a [[linear approximation]] of the objective function, and moves towards a minimizer of this linear function (taken over the same ___domain).
 
Line 14 ⟶ 15:
:'''Step 1.''' ''Direction-finding subproblem:'' Find <math>\mathbf{s}_k</math> solving
::Minimize <math> \mathbf{s}^T \nabla f(\mathbf{x}_k)</math>
::Subject to <math> \mathbf{s} \in \mathcal{D}</math>
:''(Interpretation: Minimize the linear approximation of the problem given by the first-order [[Taylor series|Taylor approximation]] of <math>f</math> around <math>\mathbf{x}_k \!</math> constrained to stay within <math>\mathcal{D}</math>.)''
 
:'''Step 2.''' ''Step size determination:'' Set <math>\alpha \leftarrow \frac{2}{k+2}</math>, or alternatively find <math>\alpha</math> that minimizes <math> f(\mathbf{x}_k+\alpha(\mathbf{s}_k -\mathbf{x}_k))</math> subject to <math>0 \le \alpha \le 1</math> .
 
:'''Step 3.''' ''Update:'' Let <math>\mathbf{x}_{k+1}\leftarrow \mathbf{x}_k+\alpha(\mathbf{s}_k-\mathbf{x}_k)</math>, let <math>k \leftarrow k+1</math> and go to Step 1.
 
 
==Properties==
While competing methods such as [[gradient descent]] for constrained optimization require a [[Projection (mathematics)|projection step]] back to the feasible set in each iteration, the Frank–Wolfe algorithm only needs the solution of a linearconvex problem over the same set in each iteration, and automatically stays in the feasible set.
 
The convergence of the Frank–Wolfe algorithm is sublinear in general: the error in the objective function to the optimum is <math>O(1/k)</math> after ''k'' iterations, so long as the gradient is [[Lipschitz continuity|Lipschitz continuous]] with respect to some norm. The same convergence rate can also be shown if the sub-problems are only solved approximately.<ref>{{Cite journal | last1 = Dunn | first1 = J. C. | last2 = Harshbarger | first2 = S. | doi = 10.1016/0022-247X(78)90137-3 | title = Conditional gradient algorithms with open loop step size rules | journal = Journal of Mathematical Analysis and Applications | volume = 62 | issue = 2 | pages = 432 | year = 1978 | doi-access = free }}</ref>
 
The iteratesiterations of the algorithm can always be represented as a sparse convex combination of the extreme points of the feasible set, which has helped to the popularity of the algorithm for sparse greedy optimization in [[machine learning]] and [[signal processing]] problems,<ref>{{Cite journal | last1 = Clarkson | first1 = K. L. | title = Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm | doi = 10.1145/1824777.1824783 | journal = ACM Transactions on Algorithms | volume = 6 | issue = 4 | pages = 1–30 | year = 2010 | citeseerx = 10.1.1.145.9299 }}</ref> as well as for example the optimization of [[flow network|minimum–cost flow]]s in [[Transport network|transportation network]]s.<ref>{{Cite journal | last1 = Fukushima | first1 = M. | title = A modified Frank-Wolfe algorithm for solving the traffic assignment problem | doi = 10.1016/0191-2615(84)90029-8 | journal = Transportation Research Part B: Methodological | volume = 18 | issue = 2 | pages = 169–177| year = 1984 }}</ref>
 
If the feasible set is given by a set of linear constraints, then the subproblem to be solved in each iteration becomes a [[linear programming|linear program]].
Line 73:
 
==External links==
*https://conditional-gradients.org/: a survey of Frank–Wolfe algorithms.
*[https://www.youtube.com/watch?v=24e08AX9Eww Marguerite Frank giving a personal account of the history of the algorithm]