Frank–Wolfe algorithm: Difference between revisions

Content deleted Content added
No edit summary
Tags: Reverted Visual edit Mobile edit Mobile web edit
The direction-finding subproblem and the update rule did not comply with each other. Either x_k +s in D in the subproblem and x_k+1 <-- x_k + \alpha s in the update or s in D in the subproblem and x_k+1 <-- x_k + \alpha (s - x_k) in the update are used. See Jaggi (2013)
 
(3 intermediate revisions by 3 users not shown)
Line 1:
{{Short description|Optimization algorithm}}
The '''Frank–Wolfe algorithm''' is an [[iterative method|iterative]] [[First-order approximation|first-order]] [[Mathematical optimization|optimization]] [[algorithm]] for [[constrained optimization|constrained]] [[convex optimization]]. Also known as the '''conditional gradient method''',<ref>{{Cite journal | last1 = Levitin | first1 = E. S. | last2 = Polyak | first2 = B. T. | doi = 10.1016/0041-5553(66)90114-5 | title = Constrained minimization methods | journal = USSR Computational Mathematics and Mathematical Physics | volume = 6 | issue = 5 | pages = 1 | year = 1966 }}</ref> '''reduced gradient algorithm''' and the '''convex combination algorithm''', the method was originally proposed by [[Marguerite Frank]] and [[Philip Wolfe (mathematician)|Philip Wolfe]] in&nbsp;1956.<ref>{{Cite journal | last1 = Frank | first1 = M. | last2 = Wolfe | first2 = P. | doi = 10.1002/nav.3800030109 | title = An algorithm for quadratic programming | journal = Naval Research Logistics Quarterly | volume = 3 | issue = 1–2 | pages = 95–110 | year = 1956 }}</ref> In each iteration, the Frank–Wolfe algorithm considers a [[linear approximation]] of the objective function, and moves towards a minimizer of this linear function (taktaken over the same ___domain).
 
==Problem statement==
Line 15:
:'''Step 1.''' ''Direction-finding subproblem:'' Find <math>\mathbf{s}_k</math> solving
::Minimize <math> \mathbf{s}^T \nabla f(\mathbf{x}_k)</math>
::Subject to <math> \mathbf{s} \in \mathcal{D}</math>
:''(Interpretation: Minimize the linear approximation of the problem given by the first-order [[Taylor series|Taylor approximation]] of <math>f</math> around <math>\mathbf{x}_k \!</math> constrained to stay within <math>\mathcal{D}</math>.)''
 
Line 23:
 
==Properties==
While competing methods such as [[gradient descent]] for constrained optimization require a [[Projection (mathematics)|projection step]] back to the feasible set in each iteration, the Frank–Wolfe algorithm only needs the solution of a linearconvex problem over the same set in each iteration, and automatically stays in the feasible set.
 
The convergence of the Frank–Wolfe algorithm is sublinear in general: the error in the objective function to the optimum is <math>O(1/k)</math> after ''k'' iterations, so long as the gradient is [[Lipschitz continuity|Lipschitz continuous]] with respect to some norm. The same convergence rate can also be shown if the sub-problems are only solved approximately.<ref>{{Cite journal | last1 = Dunn | first1 = J. C. | last2 = Harshbarger | first2 = S. | doi = 10.1016/0022-247X(78)90137-3 | title = Conditional gradient algorithms with open loop step size rules | journal = Journal of Mathematical Analysis and Applications | volume = 62 | issue = 2 | pages = 432 | year = 1978 | doi-access = free }}</ref>