Digital differential analyzer (graphics algorithm): Difference between revisions

Content deleted Content added
No edit summary
Program: The DDA algorithm requires rounding the floating point x,y to the nearest integer. The sample code should not depend on the behavior of some specific graphics library's putpixel() (for example if it takes int parameters, float->int uses truncation and will produce the wrong answer)
 
(17 intermediate revisions by 14 users not shown)
Line 1:
{{short description|Hardware or software used for interpolation of variables over an interval}}
{{About|a graphics algorithm|the digital implementation of a differential analyzer|Digital differential analyzer}}
 
Line 7 ⟶ 8:
:<math>m = \frac{y_{\rm end} -y_{\rm start}}{x_{\rm end}-x_{\rm start}}</math>
 
In fact any two consecutive points (x,y) lying on this line segment should satisfy the equation.
 
== Performance ==
Line 33 ⟶ 34:
 
== Program ==
DDA algorithm Programprogram in Turbo [[C++]]:
 
<syntaxhighlight lang="c++cpp" line="1">
#include <graphics.h>
 
#include <iostream.h>
#include <math.h>
Line 43:
#include <conio.h>
 
void main( )
{
float x,
float y,
float x1, y1,
float x2, y2, dx, dy, step;
int i, gd = DETECT, gm;
initgraph(&gd, &gm, "C:\\TURBOC3\\BGI");
cout << "Enter the value of x1 and y1 : ";
cin >> x1 >> y1;
cout << "Enter the value of x2 and y2: ";
Line 56 ⟶ 59:
dx = (x2 - x1);
dy = (y2 - y1);
 
if (abs(dx) >= abs(dy))
step = abs(dx);
else
step = abs(dy);
 
dx = dx / step;
dy = dy / step;
x = x1;
y = y1;
i = 10;
 
while(i <= step) {
while putpixel(x,i y,<= 5step); {
putpixel(round(x), round(y), 5);
x = x + dx;
y = y + dy;
Line 72 ⟶ 78:
delay(100);
}
 
getch();
closegraph();
Line 80 ⟶ 87:
 
* [[Bresenham's line algorithm]] is an algorithm for line rendering.
* [[incrementalIncremental error algorithm]]
* [[Xiaolin Wu's line algorithm]] is an algorithm for line anti-aliasing
 
Line 93 ⟶ 100:
[[Category:Computer graphics algorithms]]
[[Category:Digital geometry]]
[[Category:Articles with example C++ code]]