Pollard's rho algorithm for logarithms: Difference between revisions

Content deleted Content added
Gzim75 (talk | contribs)
m Note that G is an arbitrary cyclic group and there is no "equivalence mod k" in general G.
fix link in references
 
(10 intermediate revisions by 6 users not shown)
Line 2:
'''Pollard's rho algorithm for logarithms''' is an algorithm introduced by [[John Pollard (mathematician)|John Pollard]] in 1978 to solve the [[discrete logarithm]] problem, analogous to [[Pollard's rho algorithm]] to solve the [[integer factorization]] problem.
 
The goal is to compute <math>\gamma</math> such that <math>\alpha ^ \gamma = \beta</math>, where <math>\beta</math> belongs to a [[cyclic group]] <math>G</math> generated by <math>\alpha</math>. The algorithm computes integers[[integer]]s <math>a</math>, <math>b</math>, <math>A</math>, and <math>B</math> such that <math>\alpha^a \beta^b = \alpha^A \beta^B</math>. If the underlying [[group (mathematics)|group]] is cyclic of [[order of a group|order]] <math>n</math>, by substituting <math> \beta </math> as <math> a{\alpha}^{\gamma} </math> and noting that two powers are equal [[if and only if]] the exponents are equivalent modulo the order of the base, in this case modulo <math>n</math>, we get that <math>\gamma</math> is one of the solutions of the equation <math>(B-b) \gamma = (a-A) \pmod n</math>. Solutions to this equation are easily obtained using the [[Extendedextended Euclidean algorithm]].
 
To find the needed <math>a</math>, <math>b</math>, <math>A</math>, and <math>B</math> the algorithm uses [[Floyd's cycle-finding algorithm]] to find a cycle in the sequence <math>x_i = \alpha^{a_i} \beta^{b_i}</math>, where the [[function (mathematics)|function]] <math>f: x_i \mapsto x_{i+1}</math> is assumed to be random-looking and thus is likely to enter into a loop of approximate length <math>\sqrt{\frac{\pi n}{8}}</math> after <math>\sqrt{\frac{\pi n}{8}}</math> steps. One way to define such a function is to use the following rules: Divide[[Partition of a set|Partition]] <math>G</math> into three [[disjoint subsets of approximately equal size:subset]]s <math>S_0</math>, <math>S_1</math>, and <math>S_2</math> of approximately equal size using a [[hash function]]. If <math>x_i</math> is in <math>S_0</math> then double both <math>a</math> and <math>b</math>; if <math>x_i \in S_1</math> then increment <math>a</math>, if <math>x_i \in S_2</math> then increment <math>b</math>.
 
==Algorithm==
 
Let <math>G</math> be a [[cyclic group]] of order <math>pn</math>, and given <math>\alpha, \beta\in G</math>, and a partition <math>G = S_0\cup S_1\cup S_2</math>, let <math>f:G\to G</math> be the map
 
:<math>
Line 21:
 
:<math>\begin{align}
g(x,nk) &= \begin{cases}
nk & x\in S_0\\
2n2k \pmod p{n} & x\in S_1\\
nk+1 \pmod p{n} & x\in S_2
\end{cases}
\\
h(x,nk) &= \begin{cases}
nk+1 \pmod p{n} & x\in S_0\\
2n2k \pmod p{n} & x\in S_1\\
nk & x\in S_2
\end{cases}
\end{align}</math>
Line 38:
'''output:''' An integer ''x'' such that ''a<sup>x</sup>'' = ''b'', or failure
Initialise ''i'' &larr; 0, ''a''<sub>0</sub> &larr; 0, ''b''<sub>0</sub> &larr; 0, ''x''<sub>0</sub> &larr; 1 &isin; ''G''
''i'' &larr; 1
'''loop'''
''x<sub>i</sub>'' &larr; ''f''(''x''<sub>''i''- + 1</sub>),
''a<sub>i</sub>'' &larr; ''g''(''x''<sub>''i''-1</sub>, ''a''<sub>''i''-1</sub>),
''b<sub>i</sub>'' &larr; ''h''(''x''<sub>''i''-1</sub>, ''b''<sub>''i''-1</sub>)
''x''<sub>2''i''</sub>'' &larr; ''f''(''f''(''x''<sub>2''i''-2−1</sub>)),
''a''<sub>2''i''</sub>'' &larr; ''g''(''f''(''x''<sub>2''i''-2</sub>), ''g''(''x''<sub>2''i''-2−1</sub>, ''a''<sub>2''i''-2−1</sub>)),
''b''<sub>2''i''</sub>'' &larr; ''h''(''f''(''x''<sub>2''i''-2</sub>), ''h''(''x''<sub>2''i''-2−1</sub>, ''b''<sub>2''i''-2−1</sub>))
''x'if'<sub>2'' i''x<sub>i−1</sub>'' =&larr; ''f''(''x''<sub>2''i''−2</sub> '''then'''),
''ra''<sub>2''i''−1</sub> &larr; ''bg''(''x''<sub>2''i''−2</sub>'' -, ''ba''<sub>2''i''−2</sub>),
''b''<sub>2''i''−1</sub>'' &larr; ''h''(''x''<sub>2''i''-1−2</sub>, ''b''<sub>2''i''-1−2</sub>)
'''if''' r = 0 '''return failure'''
''x''<sub>2''i''</sub> &larr; ''rf''<sup>−1</sup>(''ax''<sub>2''i''−1</sub> - ''a<sub>i</sub>'') mod ''p'',
''a''<sub>2''i''</sub>'' &larr; ''g''(''x''<sub>2''i''-1−1</sub>, ''a''<sub>2''i''-1−1</sub>),
'''return''' ''x''
''b'else'<sub>2'' <i>// ''x<sub>i</sub>'' &nelarr; ''h''(''x''<sub>2''i''−1</sub>, ''b''</sub>2''i''−1</sub>)
'''while''' ''x<sub>i</sub>'' &larrne; ''x''<sub>2''i'' + 1</sub>
'''end if'''
''r'' &larr; ''b<sub>i</sub>'' − ''b''<sub>2''i''</sub>
'''end loop'''
'''if''' r = 0 '''return failure'''
'''return''' ''r''<sup><span class="nowrap" style="padding-left:0.1em">−1</span></sup>(''a''<sub>2''i''</sub> − ''a<sub>i</sub>'') mod ''n''
 
==Example==
Line 110 ⟶ 109:
51 1010 681 378 1010 301 416
 
That is <math>2^{681} 5^{378} = 1010 = 2^{301} 5^{416} \pmod{1019}</math> and so <math>(416-378)\gamma = 681-301 \pmod{1018}</math>, for which <math>\gamma_1=10</math> is a solution as expected. As <math>n=1018</math> is not [[prime number|prime]], there is another solution <math>\gamma_2=519</math>, for which <math>2^{519} = 1014 = -5\pmod{1019}</math> holds.
 
==Complexity==
The running time is approximately <math>\mathcal{O}(\sqrt{n})</math>. If used together with the [[Pohlig–Hellman algorithm]], the running time of the combined algorithm is <math>\mathcal{O}(\sqrt{p})</math>, where <math>p</math> is the largest prime [[divisor|factor]] of <math>n</math>.
 
==References==
{{Reflist}}
*{{cite journal |first=J. M. |last=Pollard |title=Monte Carlo methods for index computation (mod ''p'') |journal=[[Mathematics of Computation]] |volume=32 |year=1978 |issue=143 |pages=918–924 |doi= 10.2307/2006496 |jstor=2006496 }}
*{{cite book |firstfirst1=Alfred J. |lastlast1=Menezes |first2=Paul C. |last2=van Oorschot |first3=Scott A. |last3=Vanstone |chapter-url=httphttps://www.cacr.math.uwaterloo.ca/hac/about/chap3.pdf |title=Handbook of Applied Cryptography |chapter=Chapter 3 |year=2001 }}
 
{{Number-theoretic algorithms}}