Pollard's rho algorithm for logarithms: Difference between revisions

Content deleted Content added
fix link in references
 
(110 intermediate revisions by 85 users not shown)
Line 1:
{{Short description|Mathematical algorithm}}
'''Pollard's rho algorithm for logarithms''' is an algorithm for solving the [[discrete logarithm]] problem analogous to [[Pollard's rho algorithm]] for solving the [[Integer factorization]] problem.
'''Pollard's rho algorithm for logarithms''' is an algorithm introduced by [[John Pollard (mathematician)|John Pollard]] in 1978 to solve the [[discrete logarithm]] problem, analogous to [[Pollard's rho algorithm]] to solve the [[integer factorization]] problem.
 
The goal is to compute <math>\gamma</math> such that <math>\alpha ^ \gamma = \beta</math>, where <math>\beta</math> belongs to thea [[Groupcyclic (mathematics)|group]] <math>G</math> generated by <math>\alpha</math>. The algorithm computes integers[[integer]]s <math>a</math>, <math>b</math>, <math>A</math>, and <math>B</math> such that <math>\alpha^a \beta^b = \alpha^A \beta^B</math>. Assuming, for simplicity, thatIf the underlying [[group (mathematics)|group]] is cyclic of [[order of a group|order]] <math>n</math>, by substituting <math> \beta </math> as <math> {\alpha}^{\gamma} </math> and noting that two powers are equal [[if and only if]] the exponents are equivalent modulo the order of the base, in this case modulo <math>n</math>, we canget calculatethat <math>\gamma</math> asis aone of the solutionsolutions of the equation <math>(B-b) \gamma = (a-A) \pmod{ n}</math>. Solutions to this equation are easily obtained using the [[extended Euclidean algorithm]].
 
To find the needed <math>a</math>, <math>b</math>, <math>A</math>, and <math>B</math> the algorithm uses [[Floyd's cycle-finding algorithm]] to find a cycle in the sequence <math>x_i = \alpha^{a_i} \beta^{b_i}</math>, where the [[function (mathematics)|function]] <math>f: x_i \mapsto x_{i+1}</math> is assumed to be random-looking and thus is likely to enter into a loop afterof approximatelyapproximate length <math>\sqrt{\frac{\pi n}{28}}</math> after <math>\sqrt{\frac{\pi n}{8}}</math> steps. One way to define such a function is to use the following rules: Divide[[Partition of a set|Partition]] <math>G</math> into three subsets (not necessarily [[subgroupdisjoint subset]]s) of approximately equal size: <math>G_0S_0</math>, <math>G_1S_1</math>, and <math>G_2S_2</math> of approximately equal size using a [[hash function]]. If <math>x_i</math> is in <math>G_0S_0</math> then double both <math>a</math> and <math>b</math>; if <math>x_i \in G_1S_1</math> then increment <math>a</math>, if <math>x_i \in G_2S_2</math> then increment <math>b</math>.
 
==Algorithm==
 
Let <math>G</math> be a [[cyclic group]] of prime order <math>pn</math>, and given <math>a\alpha,b \beta\in G</math>, and a partition <math>G = G_0S_0\cup G_1S_1\cup G_2S_2</math>, let <math>f:G\to G</math> be athe map
 
:<math>
f(x) = \left\{\begin{matrixcases}
b\cdotbeta x & x\in G_0S_0\\
x^2 & x\in G_1S_1\\
a\cdotalpha x & x\in G_2S_2
\end{matrixcases}\right.
</math>
 
and define maps <math>g:G\times\mathbb{Z}\to\mathbb{Z}</math> and <math>h:G\times\mathbb{Z}\to\mathbb{Z}</math> by
 
:<math>\begin{align}
g(x,nk) &= \left\{\begin{matrixcases}
nk & x\in G_0S_0\\
2n2k \pmod (\bmod \ p){n} & x\in G_1S_1\\
nk+1 \pmod (\bmod \ p){n} & x\in G_2S_2
\end{matrixcases}\right.
\\
</math>
h(x,k) &= \begin{cases}
k+1 \pmod {n} & x\in S_0\\
2k \pmod {n} & x\in S_1\\
k & x\in S_2
\end{cases}
\end{align}</math>
 
'''input:''' ''a'': a generator of ''G''
<math>
''b'': an element of ''G''
h(x,n) = \left\{\begin{matrix}
'''output:''' An integer ''x'' such that ''a<sup>x</sup>'' = ''b'', or failure
n+1 \ (\bmod \ p) & x\in G_0\\
2n \ (\bmod \ p) & x\in G_1\\
Initialise ''i'' &larr; 0, ''a''<sub>0</sub> &larr; 0, ''b''<sub>0</sub> &larr; 0, ''x''<sub>0</sub> &larr; 1 &isin; ''G''
n & x\in G_2
\end{matrix}\right.
'''loop'''
</math>
''i'' &larr; ''i'' + 1
''x<sub>i</sub>'' &larr; ''f''(''x''<sub>''i''−1</sub>),
''a<sub>i</sub>'' &larr; ''g''(''x''<sub>''i''−1</sub>, ''a''<sub>''i''−1</sub>),
''b<sub>i</sub>'' &larr; ''h''(''x''<sub>''i''−1</sub>, ''b''<sub>''i''−1</sub>)
''x''<sub>2''i''−1</sub> &larr; ''f''(''x''<sub>2''i''−2</sub>),
''a''<sub>2''i''−1</sub> &larr; ''g''(''x''<sub>2''i''−2</sub>, ''a''<sub>2''i''−2</sub>),
''b''<sub>2''i''−1</sub> &larr; ''h''(''x''<sub>2''i''−2</sub>, ''b''<sub>2''i''−2</sub>)
''x''<sub>2''i''</sub> &larr; ''f''(''x''<sub>2''i''−1</sub>),
''a''<sub>2''i''</sub> &larr; ''g''(''x''<sub>2''i''−1</sub>, ''a''<sub>2''i''−1</sub>),
''b''<sub>2''i''</sub> &larr; ''h''(''x''<sub>2''i''−1</sub>, ''b''<sub>2''i''−1</sub>)
'''while''' ''x<sub>i</sub>'' &ne; ''x''<sub>2''i''</sub>
''r'' &larr; ''b<sub>i</sub>'' − ''b''<sub>2''i''</sub>
'''if''' r = 0 '''return failure'''
'''return''' ''r''<sup><span class="nowrap" style="padding-left:0.1em">−1</span></sup>(''a''<sub>2''i''</sub> − ''a<sub>i</sub>'') mod ''n''
 
==Example==
:'''Inputs''' ''a'' a generator of ''G'', ''b'' an element of ''G''
Consider, for example, the group generated by 2 modulo <math>N=1019</math> (the order of the group is <math>n=1018</math>, 2 generates the group of units modulo 1019). The algorithm is implemented by the following [[C++]] program:
:'''Output''' An integer ''x'' such that ''a<sup>x</sup> = b'', or failure
:# Initialise ''a<sub>0</sub>'' &larr; 0
:#::''b<sub>0</sub>'' &larr; 0
:#::''x<sub>0</sub>'' &larr; 1 &isin; ''G''
:#::''i'' &larr; 1
:# ''x<sub>i</sub>'' &larr; ''f(x<sub>i-1</sub>)'', ''a<sub>i</sub>'' &larr; ''g(x<sub>i-1</sub>,a<sub>i-1</sub>)'', ''b<sub>i</sub>'' &larr; ''h(x<sub>i-1</sub>,b<sub>i-1</sub>)''
:#''x<sub>2i</sub>'' &larr; ''f(f(x<sub>2i-2</sub>))'', ''a<sub>2i</sub>'' &larr; ''g(f(x<sub>2i-2</sub>),g(x<sub>2i-2</sub>,a<sub>2i-2</sub>))'', ''b<sub>2i</sub>'' &larr; ''h(f(x<sub>2i-2</sub>),h(x<sub>2i-2</sub>,b<sub>2i-2</sub>))''
:# If ''x<sub>i</sub>'' = ''x<sub>2i</sub>'' then
:## ''r'' &larr; ''b<sub>i</sub>'' - ''b<sub>2i</sub>''
:## If r = 0 return failure
:## x &larr; ''r<sup>-1</sup>''(''a<sub>2i</sub>'' - ''a<sub>i</sub>'') mod ''p''
:## return x
:# If ''x<sub>i</sub>'' &ne; ''x<sub>2i</sub>'' then ''i'' &larr; ''i+1'', and go to step 2.
 
<syntaxhighlight lang="cpp">
==Example==
#include <stdio.h>
 
const int n = 1018, N = n + 1; /* N = 1019 -- prime */
const int alpha = 2; /* generator */
const int beta = 5; /* 2^{10} = 1024 = 5 (N) */
 
void new_xab(int& x, int& a, int& b) {
Consider, for example, the group generated by 2 modulo <math>N=1019</math> (the order of the group is <math>n=1018</math>, 2
switch (x % 3) {
generates the group of units modulo 1019). The algorithm is implemented by the following [[C]] program:
case 0: x = x * x % N; a = a*2 % n; b = b*2 % n; break;
case 1: x = x * alpha % N; a = (a+1) % n; break;
case 2: x = x * beta % N; b = (b+1) % n; break;
}
}
 
int main(void) {
#include <stdio.h>
const int nx = 10181, Na = n0, + 1; /* Nb = 1019 -- prime */0;
const int alphaX = 2;x, A = a, B = /* generator */b;
const for (int betai = 51; i < n; ++i) /* 2^{10} = 1024 = 5 (N) */
void new_xab( int& x, int& a, int& b ) {;
switch new_xab(X, x%3A, B) {;
new_xab(X, A, B);
case 0: x = x*x % N; a = a*2 % n; b = b*2 % n; break;
case 1:printf("%3d x =%4d x*alpha%3d %3d N; %4d a = (a+1)%3d % 3d\n;", i, x, a, b, X, A, breakB);
case 2:if (x = x*beta % N; b = (b+1X) % n; break;
}
return 0;
}
}
int main() {
</syntaxhighlight>
int x=1, a=0, b=0;
int X=x, A=a, B=b;
for( int i = 1; i < n; ++i ) {
new_xab( x, a, b );
new_xab( X, A, B ); new_xab( X, A, B );
printf( "%3d %4d %3d %3d %4d %3d %3d\n", i, x, a, b, X, A, B );
if( x == X ) break;
}
return 0;
}
 
The results are as follows (edited):
Line 96 ⟶ 109:
51 1010 681 378 1010 301 416
 
That is <math>2^{681} 5^{378} = 1010 = 2^{301} 5^{416} \pmod{1019}</math> and so <math>(416-378)\gamma = 681-301 \pmod{1018}</math>, for which <math>\gamma_1=10</math> is a solution as expected. As <math>n=1018</math> is not [[prime number|prime]], there is another solution <math>\gamma_2=519</math>, for which <math>2^{519} = 1014 = -5\pmod{1019}</math> holds.
 
==Complexity==
The running time is approximately <math>\mathcal{O}(\sqrt{n})</math>. If used together with the [[Pohlig–Hellman algorithm]], the running time of the combined algorithm is <math>\mathcal{O}(\sqrt{p})</math>, where <math>p</math> is the largest prime [[divisor|factor]] of <math>n</math>.
The running time is approximately O(<math>\sqrt{n}</math>)
 
==References==
{{Reflist}}
* J. Pollard, ''Monte Carlo methods for index computation mod p'', Mathematics of Computation, Volume 32, 1978.
*{{cite journal |first=J. M. |last=Pollard |title=Monte Carlo methods for index computation (mod ''p'') |journal=[[Mathematics of Computation]] |volume=32 |year=1978 |issue=143 |pages=918–924 |doi= 10.2307/2006496 |jstor=2006496 }}
* Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, [http://www.cacr.math.uwaterloo.ca/hac/about/chap3.pdf Handbook of Applied Cryptography, Chapter 3], 2001.
*{{cite book |first1=Alfred J. |last1=Menezes |first2=Paul C. |last2=van Oorschot |first3=Scott A. |last3=Vanstone |chapter-url=https://cacr.uwaterloo.ca/hac/about/chap3.pdf |title=Handbook of Applied Cryptography |chapter=Chapter 3 |year=2001 }}
 
{{Number-theoretic algorithms}}
[[category:logarithms]]
 
[[Category:Logarithms]]
[[ru:Ρ-метод Полларда дискретного логарифмирования]]
[[Category:Number theoretic algorithms]]