Content deleted Content added
fix link in references |
|||
(110 intermediate revisions by 85 users not shown) | |||
Line 1:
{{Short description|Mathematical algorithm}}
'''Pollard's rho algorithm for logarithms''' is an algorithm introduced by [[John Pollard (mathematician)|John Pollard]] in 1978 to solve the [[discrete logarithm]] problem, analogous to [[Pollard's rho algorithm]] to solve the [[integer factorization]] problem.
The goal is to compute <math>\gamma</math> such that <math>\alpha ^ \gamma = \beta</math>, where <math>\beta</math> belongs to
To find the needed <math>a</math>, <math>b</math>, <math>A</math>, and <math>B</math> the algorithm uses [[Floyd's cycle-finding algorithm]] to find a cycle in the sequence <math>x_i = \alpha^{a_i} \beta^{b_i}</math>, where the [[function (mathematics)|function]] <math>f: x_i \mapsto x_{i+1}</math> is assumed to be random-looking and thus is likely to enter into a loop
==Algorithm==
Let <math>G</math> be a [[cyclic group]] of
:<math>
f(x) =
x^2 & x\in
\end{
</math>
and define maps <math>g:G\times\mathbb{Z}\to\mathbb{Z}</math> and <math>h:G\times\mathbb{Z}\to\mathbb{Z}</math> by
:<math>\begin{align}
g(x,
\end{
\\
h(x,k) &= \begin{cases}
k+1 \pmod {n} & x\in S_0\\
2k \pmod {n} & x\in S_1\\
k & x\in S_2
\end{cases}
\end{align}</math>
'''input:''' ''a'': a generator of ''G''
''b'': an element of ''G''
'''output:''' An integer ''x'' such that ''a<sup>x</sup>'' = ''b'', or failure
Initialise ''i'' ← 0, ''a''<sub>0</sub> ← 0, ''b''<sub>0</sub> ← 0, ''x''<sub>0</sub> ← 1 ∈ ''G''
'''loop'''
''i'' ← ''i'' + 1
''x<sub>i</sub>'' ← ''f''(''x''<sub>''i''−1</sub>),
''a<sub>i</sub>'' ← ''g''(''x''<sub>''i''−1</sub>, ''a''<sub>''i''−1</sub>),
''b<sub>i</sub>'' ← ''h''(''x''<sub>''i''−1</sub>, ''b''<sub>''i''−1</sub>)
''x''<sub>2''i''−1</sub> ← ''f''(''x''<sub>2''i''−2</sub>),
''a''<sub>2''i''−1</sub> ← ''g''(''x''<sub>2''i''−2</sub>, ''a''<sub>2''i''−2</sub>),
''b''<sub>2''i''−1</sub> ← ''h''(''x''<sub>2''i''−2</sub>, ''b''<sub>2''i''−2</sub>)
''x''<sub>2''i''</sub> ← ''f''(''x''<sub>2''i''−1</sub>),
''a''<sub>2''i''</sub> ← ''g''(''x''<sub>2''i''−1</sub>, ''a''<sub>2''i''−1</sub>),
''b''<sub>2''i''</sub> ← ''h''(''x''<sub>2''i''−1</sub>, ''b''<sub>2''i''−1</sub>)
'''while''' ''x<sub>i</sub>'' ≠ ''x''<sub>2''i''</sub>
''r'' ← ''b<sub>i</sub>'' − ''b''<sub>2''i''</sub>
'''if''' r = 0 '''return failure'''
'''return''' ''r''<sup><span class="nowrap" style="padding-left:0.1em">−1</span></sup>(''a''<sub>2''i''</sub> − ''a<sub>i</sub>'') mod ''n''
==Example==
Consider, for example, the group generated by 2 modulo <math>N=1019</math> (the order of the group is <math>n=1018</math>, 2 generates the group of units modulo 1019). The algorithm is implemented by the following [[C++]] program:
<syntaxhighlight lang="cpp">
#include <stdio.h>
const int n = 1018, N = n + 1; /* N = 1019 -- prime */
const int alpha = 2; /* generator */
const int beta = 5; /* 2^{10} = 1024 = 5 (N) */
void new_xab(int& x, int& a, int& b) {
switch (x % 3) {
case 0: x = x * x % N; a = a*2 % n; b = b*2 % n; break;
case 1: x = x * alpha % N; a = (a+1) % n; break;
case 2: x = x * beta % N; b = (b+1) % n; break;
}
}
int main(void) {
new_xab(X, A, B);
return 0;
}
</syntaxhighlight>
The results are as follows (edited):
Line 96 ⟶ 109:
51 1010 681 378 1010 301 416
That is <math>2^{681} 5^{378} = 1010 = 2^{301} 5^{416} \pmod{1019}</math> and so <math>(416-378)\gamma = 681-301 \pmod{1018}</math>, for which <math>\gamma_1=10</math> is a solution as expected. As <math>n=1018</math> is not [[prime number|prime]], there is another solution <math>\gamma_2=519</math>, for which <math>2^{519} = 1014 = -5\pmod{1019}</math> holds.
==Complexity==
The running time is approximately <math>\mathcal{O}(\sqrt{n})</math>. If used together with the [[Pohlig–Hellman algorithm]], the running time of the combined algorithm is <math>\mathcal{O}(\sqrt{p})</math>, where <math>p</math> is the largest prime [[divisor|factor]] of <math>n</math>.
==References==
{{Reflist}}
*{{cite journal |first=J. M. |last=Pollard |title=Monte Carlo methods for index computation (mod ''p'') |journal=[[Mathematics of Computation]] |volume=32 |year=1978 |issue=143 |pages=918–924 |doi= 10.2307/2006496 |jstor=2006496 }}
*{{cite book |first1=Alfred J. |last1=Menezes |first2=Paul C. |last2=van Oorschot |first3=Scott A. |last3=Vanstone |chapter-url=https://cacr.uwaterloo.ca/hac/about/chap3.pdf |title=Handbook of Applied Cryptography |chapter=Chapter 3 |year=2001 }}
{{Number-theoretic algorithms}}
[[Category:Logarithms]]
[[Category:Number theoretic algorithms]]
|