Truncated power function: Difference between revisions

Content deleted Content added
references & stubbed...
Citation bot (talk | contribs)
Altered isbn. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Awkwafaba | #UCB_webform 444/500
 
(13 intermediate revisions by 9 users not shown)
Line 1:
GivenIn a function ''f''mathematics, the '''truncated power function'''<ref>{{cite is defined asbook
{{references}}
|title=Interpolation and Approximation with Splines and Fractals
{{expert}}
|first=Peter|last=Massopust
In the [[mathematical]] subfield of [[numerical analysis]] the '''truncated power function''' is a generalization of the [[indicator function]].
|publisher= Oxford University Press, USA
|year=2010
|isbn=978-0-19-533654-2
|page=46
}}</ref> with exponent <math>n</math> is defined as
 
:<math>f_x_+^n :=
==Definition==
\left\{\begin{matrixcases}
 
fx^n &\mbox{if}:\ fx \ge> 0 \\
Given a function ''f'' the '''truncated power function''' is defined as
0 &:\ x \le 0.
\end{cases}
</math>
 
In particular,
:<math>f_+^n :=
:<math>x_+ =
\left\{\begin{matrix}
\begin{cases}
f^n &\mbox{if}\ f \ge 0 \\
0x &\mbox{if}:\ fx <> 0 \\
0 &:\ x \le 0.
\end{matrix}\right.
\end{cases}
</math>
and interpret the exponent as conventional [[power function|power]].
 
==NotesRelations==
* Truncated power functions can be used for construction of [[B-spline]]s.
* <math>x \mapsto x_+^0</math> is the [[Heaviside function]].
:* <math>\chi_{([a,b])}(x) = (b-x)_+^0 - (a-x)_+^0</math> where <math>\chi</math> is the [[indicator function]].
* Truncated power functions are [[refinable function|refinable]].
 
== See also ==
:<math>\chi_{(a,b]}(x) = (b-x)_+^0 - (a-x)_+^0</math>
* [[Macaulay brackets]]
 
==External links==
*[http://mathworld.wolfram.com/TruncatedPowerFunction.html Truncated Power Function on MathWorld]
 
==References==
[[Category:Numerical analysis]]
{{<references}}/>
 
[[Category:Numerical analysis]]
{{math-stub}}