Truncated power function: Difference between revisions

Content deleted Content added
Link
Citation bot (talk | contribs)
Altered isbn. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Awkwafaba | #UCB_webform 444/500
 
(17 intermediate revisions by 13 users not shown)
Line 1:
In the [[mathematical]] subfield of [[numerical analysis]]mathematics, the '''truncated power function'''<ref>{{cite is a generalization of the [[indicator function]].book
|title=Interpolation and Approximation with Splines and Fractals
|first=Peter|last=Massopust
|publisher= Oxford University Press, USA
|year=2010
|isbn=978-0-19-533654-2
|page=46
}}</ref> with exponent <math>n</math> is defined as
 
:<math>f_x_+^n :=
==Definition==
\left\{\begin{matrixcases}
x^n &:\ x > 0 \\
0 &:\ x \le 0.
\end{cases}
</math>
 
In particular,
Given a function ''f'' the '''truncated power function''' is defined as
:<math>x_+ =
 
\begin{cases}
:<math>f_+^n :=
x &:\ x > 0 \\
\left\{\begin{matrix}
f^n0 &\mbox{if}:\ fx \gele 0 \\.
\end{cases}
0 &\mbox{if}\ f < 0
\end{matrix}\right.
</math>
and interpret the exponent as conventional [[power function|power]].
 
==Relations==
* Truncated power functions can be used for construction of [[B-spline]]s.
* <math>x \mapsto x_+^0</math> is the [[Heaviside function]].
:* <math>\chi_{([a,b])}(x) = (b-x)_+^0 - (a-x)_+^0</math> where <math>\chi</math> is the [[indicator function]].
* Truncated power functions are [[refinable function|refinable]].
 
==Notes See also ==
* [[Macaulay brackets]]
 
==External links==
:<math>\chi_{(a,b]}(x) = (b-x)_+^0 - (a-x)_+^0</math>
*[http://mathworld.wolfram.com/TruncatedPowerFunction.html Truncated Power Function on MathWorld]
 
==External LinksReferences==
<references/>
[http://mathworld.wolfram.com/TruncatedPowerFunction.html Truncated Power Function on MathWorld]
 
[[Category:Numerical analysis]]