Content deleted Content added
incorrect link now correctly fixed |
→Invariants of several binary forms: updated to <math> |
||
(38 intermediate revisions by 21 users not shown) | |||
Line 1:
In mathematical [[invariant theory]], an '''invariant of a binary form''' is a polynomial in the coefficients of a [[
{{TOC limit|2}}
==Terminology==
{{main|Glossary of invariant theory}}
A binary form (of degree ''n'') is a homogeneous polynomial
In terms of [[representation theory]], given any representation
The invariants of a binary form
Forms of degrees 2, 3, 4, 5, 6, 7, 8, 9, 10 are sometimes called quadrics, cubic, quartics, quintics, sextics, septics or septimics, octics or octavics, nonics, and decics or decimics. "Quantic" is an old name for a form of arbitrary degree. Forms in 1, 2, 3, 4, ... variables are called unary, binary, ternary, quaternary, ... forms.
Line 35 ⟶ 37:
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\[10pt]
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{bmatrix}
is a simultaneous
==The ring of invariants==
Line 44 ⟶ 46:
===Covariants of a binary linear form===
For linear forms
===Covariants of a binary quadric===
The algebra of invariants of the quadratic form
===Covariants of a binary cubic===
The algebra of invariants of the cubic form
===Covariants of a binary quartic===
The algebra of invariants of a quartic form is generated by invariants
<math display="block"> \begin{aligned} F_4(x, y)&=A x^4+4 B x^3 y+6 C x^2 y^2+4 D x y^3+E y^4\\ i_{F_4}&=A E-4 B D+3 C^2 \\ j_{F_4}&=A C E+2 B C D-C^3-B^2 E-A D^2 \end{aligned} </math> This ring is naturally isomorphic to the ring of modular forms of level 1, with the two generators corresponding to the Eisenstein series ===Covariants of a binary quintic===
Line 68 ⟶ 79:
===Covariants of a binary septic===
The ring of invariants of binary septics is anomalous and has caused several published errors. Cayley claimed incorrectly that the ring of invariants is not finitely generated. {{harvtxt|Sylvester|Franklin|1879}} gave lower bounds of 26 and 124 for the number of generators of the ring of invariants and the ring of covariants and observed that an unproved "fundamental postulate" would imply that equality holds. However {{harvtxt|von Gall|1888}} showed that Sylvester's numbers are not equal to the numbers of generators, which are 30 for the ring of invariants and at least 130 for the ring of covariants, so Sylvester's fundamental postulate is wrong. {{harvtxt|von Gall|1888}} and {{harvtxt|Dixmier|Lazard|
===Covariants of a binary octavic===
Line 76 ⟶ 87:
===Covariants of a binary nonic===
{{harvtxt|Brouwer|Popoviciu|2010a}} showed that the algebra of invariants of a degree 9 form is generated by 92 invariants. Cröni, Hagedorn, and Brouwer<ref name="aeb">[http://www.win.tue.nl/~aeb/math/invar.html Brouwer, Invariants and covariants of quantics]</ref> computed 476 covariants, and Lercier & Olive showed that this list is complete.
===Covariants of a binary decimic===
Sylvester stated that the ring of invariants of binary decics is generated by 104 invariants the ring of covariants by 475 covariants; his list is to be correct for degrees up to 16 but wrong for higher degrees. {{harvtxt|Brouwer|Popoviciu|2010b}} showed that the algebra of invariants of a degree 10 form is generated by 106 invariants. Hagedorn and Brouwer<ref name="aeb"/> computed 510 covariants, and Lercier & Olive showed that this list is complete.
===Covariants of a binary undecimic===
Line 93 ⟶ 104:
==Invariants of several binary forms==
The covariants of a binary form are essentially the same as joint invariants of a binary form and a binary linear form. More generally, on can ask for the joint invariants (and covariants) of any collection of binary forms. Some cases that have been studied are listed below.
{| class="wikitable"
|+ (basic invariant, basic covariant)
! Degree of forms !! 1 !! 2 !! 3 !! 4 !! 5
|-
| 1
| (1, 3)
|| (2, 5)
|| (4, 13)
|| (5, 20)
|| (23, 94)
|-
| 2
|
|| (3, 6)
|| (5, 15)
|| (6, 18)
|| (29, 92)
|-
| 3
|
||
||
|| (20, 63)
||(8, 28)
|-
| 4
|
||
||
||
||
|}
Notes:
* The basic invariants of a linear form are essentially the same as its basic covariants.
* For two quartics, there are 8 basic invariants (3 of degree 2, 4 of degree 3, and 1 of degree 4) and 28 basic covariants. (Gordan gave 30 covariants, but Sylvester showed that two of these are reducible.)
Multiple forms:
* Covariants of several linear forms: The ring of invariants of <math>n</math> linear forms is generated by <math>n(n-1)/2</math> invariants of degree 2. The ring of covariants of <math>n</math> linear forms is essentially the same as the ring of invariants of <math>n+1</math> linear forms.
* Covariants of several linear and quadratic forms:
** The ring of invariants of a sum of <math>m</math> linear forms and <math>n</math> quadratic forms is generated by <math>m(m-1)/2 + n(n+1)/2</math> generators in degree 2, <math>nm(m+1)/2 + n(n-1)(n-2)/6</math> in degree 3, and <math>m(m+1)n(n-1)/4</math> in degree 4.
** For the number of generators of the ring of covariants, change <math>m</math> to <math>m+1</math>.
* Covariants of many cubics or quartics: See {{harvtxt|Young|1898}}.
==See also==
Line 168 ⟶ 156:
==References==
{{Reflist}}
*{{Citation | last1=Brouwer | first1=Andries E. | last2=Popoviciu | first2=Mihaela | title=The invariants of the binary nonic | doi=10.1016/j.jsc.2010.03.003 | year=2010a | journal=Journal of Symbolic Computation | issn=0747-7171 | volume=45 | issue=6 | pages=709–720 | mr=2639312| arxiv=1002.0761 | s2cid=30297 }}
*{{Citation | last1=Brouwer | first1=Andries E. | last2=Popoviciu | first2=Mihaela | title=The invariants of the binary decimic | doi=10.1016/j.jsc.2010.03.002 | year=2010b | journal=Journal of Symbolic Computation | issn=0747-7171 | volume=45 | issue=8 | pages=837–843 | mr=2657667| arxiv=1002.1008 | s2cid=12702092 }}
*{{Citation | first=Holger |last=Cröni |title=Zur Berechnung von Kovarianten von Quantiken |type=Dissertation |publisher=Univ. des Saarlandes |___location=Saarbrücken |year=2002}}
*{{Citation | last1=Dixmier | first1=Jacques | last2=Lazard | first2=D. | title=Minimum number of fundamental invariants for the binary form of degree 7 | doi=10.1016/S0747-7171(88)80026-9 | year=1988 | journal=Journal of Symbolic Computation | issn=0747-7171 | volume=6 | issue=1 | pages=113–115 | mr=961375| doi-access=free }} *{{Citation | last1=von Gall | first1=August Freiherr | title=Das vollständige Formensystem einer binären Form achter Ordnung | doi=10.1007/BF01444117 | year=1880 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=17 | issue=1 | pages=31–51 | mr=1510048| s2cid=120828980 | url=https://zenodo.org/record/2373565 }}
*{{Citation | last1=von Gall | first1=August Freiherr | title=Das vollständige Formensystem der binären Form 7<sup>ter</sup>Ordnung | doi=10.1007/BF01206218 | year=1888 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=31 | issue=3 | pages=318–336 | mr=1510486| s2cid=121051862 | url=https://zenodo.org/record/2481603 }}
*{{Citation | last1=Gordan | first1=Paul | title=Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Funktion mit numerischen Coeffizienten einer endlichen Anzahl solcher Formen ist | doi=10.1515/crll.1868.69.323 | year=1868 | journal=
*{{Citation | last1=Hilbert | first1=David | author1-link=David Hilbert | url=
*{{Citation | last1=Kung | first1=Joseph P. S. | last2=Rota | first2=Gian-Carlo | author2-link=Gian-Carlo Rota | title=The invariant theory of binary forms
*{{Citation | last1=Schur | first1=Issai | editor1-last=Grunsky | editor1-first=Helmut | title=Vorlesungen über Invariantentheorie | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | series=Die Grundlehren der mathematischen Wissenschaften | year=1968 | volume=143 |isbn = 978-3-540-04139-9 | mr=0229674}}
*{{Citation | last1=Shioda | first1=Tetsuji | title=On the graded ring of invariants of binary octavics | year=1967 | journal=[[American Journal of Mathematics]] | issn=0002-9327 | volume=89 | pages=1022–1046 | mr=0220738 | jstor=2373415 | doi=10.2307/2373415 | issue=4}}
*{{Citation | last1=Sturmfels | first1=Bernd | author1-link=Bernd Sturmfels | title=Algorithms in invariant theory | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | series=Texts and Monographs in Symbolic Computation | isbn=978-3-211-82445-0 | doi=10.1007/978-3-211-77417-5 | year=1993 | mr=1255980}}
*{{Citation | last1=Sylvester | first1=J. J. | author1-link=J. J. Sylvester | last2=Franklin | first2=F. | title=Tables of the Generating Functions and Groundforms for the Binary Quantics of the First Ten Orders | doi=10.2307/2369240 | year=1879 | journal=[[American Journal of Mathematics]] | issn=0002-9327 | volume=2 | issue=3 | pages=223–251 | mr=1505222| jstor=2369240 }}
*{{Citation | last1=Sylvester | first1=James Joseph | title=Tables of the Generating Functions and Groundforms of the Binary Duodecimic, with Some General Remarks, and Tables of the Irreducible Syzygies of Certain Quantics |
* {{cite journal |last1=Young |first1=A. |title=The Irreducible Concomitants of any Number of Binary Quartics |journal=Proceedings of the London Mathematical Society |date=November 1898 |volume=s1-30 |issue=1 |pages=290–307 |doi=10.1112/plms/s1-30.1.290}}
==External links==
|