Content deleted Content added
m →Formal definition: Add hyperlink to sigma-algebra page |
|||
(One intermediate revision by one other user not shown) | |||
Line 4:
== Formal definition ==
Let <math>(X,\mathcal A)</math> and <math>(Y,\mathcal B)</math> be [[measurable space]]s. A ''Markov kernel'' with source <math>(X,\mathcal A)</math> and target <math>(Y,\mathcal B)</math>, sometimes written as <math>\kappa:(X,\mathcal{A})\to(Y,\mathcal{B})</math>, is a
# For every (fixed) <math>B_0 \in \mathcal B</math>, the map <math> x \mapsto \kappa(B_0, x)</math> is <math>\mathcal A</math>-[[measurable function|measurable]]
# For every (fixed) <math> x_0 \in X</math>, the map <math> B \mapsto \kappa(B, x_0)</math> is a [[probability measure]] on <math>(Y, \mathcal B)</math>
In other words it associates to each point <math>x \in X</math> a [[probability measure]] <math>\kappa(dy|x): B \mapsto \kappa(B, x)</math> on <math>(Y,\mathcal B)</math> such that, for every measurable set <math>B\in\mathcal B</math>, the map <math>x\mapsto \kappa(B, x)</math> is measurable with respect to the [[Σ-algebra|<math>\sigma</math>-algebra <math>\mathcal A</math>]].<ref>{{cite book |last1=Klenke |first1=Achim |title=Probability Theory: A Comprehensive Course|series=Universitext |year=2014 |publisher=Springer|page=180|edition=2|doi=10.1007/978-1-4471-5361-0|isbn=978-1-4471-5360-3 }}</ref>
== Examples ==
|