Content deleted Content added
→Algorithms: Needs further inline citations throughout ~~~~ |
m Disambiguating links to Image restoration (link changed to Digital photograph restoration) using DisamAssist. |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 6:
The search area for a good macroblock match is decided by the ‘search parameter’, p, where p is the number of [[pixels]] on all four sides of the corresponding macro-block in the previous frame. The search parameter is a measure of motion. The larger the value of p, larger is the potential motion and the possibility for finding a good match. A full search of all potential blocks however is a computationally expensive task. Typical inputs are a macroblock of size 16 pixels and a search area of p = 7 pixels.
[[Block-matching and 3D filtering]] makes use of this approach to solve various [[Digital photograph restoration|image restoration]] [[inverse problems]] such as [[noise reduction]]<ref>{{cite journal |last1= Dabov |first1= Kostadin |last2= Foi |first2= Alessandro |first3= Vladimir |last3= Katkovnik |first4= Karen |last4= Egiazarian |date= 16 July 2007 |title= Image denoising by sparse 3D transform-___domain collaborative filtering |journal= IEEE Transactions on Image Processing |volume=16 |issue= 8 |pages= 2080–2095 |doi= 10.1109/TIP.2007.901238 |pmid= 17688213 |bibcode= 2007ITIP...16.2080D |citeseerx= 10.1.1.219.5398 |s2cid= 1475121 }}</ref> and [[deblurring]]<ref>{{Cite journal|last1= Danielyan|first1= Aram|last2= Katkovnik|first2= Vladimir|last3= Egiazarian|first3= Karen|arxiv=1106.6180 |title= BM3D Frames and Variational Image Deblurring |journal= IEEE Transactions on Image Processing|volume= 21|issue= 4|pages= 1715–28|date=30 June 2011 |doi= 10.1109/TIP.2011.2176954|pmid= 22128008|bibcode= 2012ITIP...21.1715D|s2cid= 11204616}}</ref> in both still images and [[digital video]].
== Motivation ==
Line 37:
However this is the most computationally extensive block matching algorithm among all. A larger search window requires greater number of computations.
The optimized hierarchical block matching (OHBM) algorithm speeds up the exhaustive search based on the optimized image pyramids.<ref name="Je_spic13_ohbm">{{Cite journal |doi = 10.1016/j.image.2013.04.002|title = Optimized hierarchical block matching for fast and accurate image registration|journal = Signal Processing: Image Communication|volume = 28|issue = 7|pages = 779–791|year = 2013|last1 = Je|first1 = Changsoo|last2 = Park|first2 = Hyung-Min}}</ref>
|