Content deleted Content added
No edit summary |
Wikipedia:Articles for deletion/Logarithmic convolution closed as speedy keep (XFDcloser) |
||
(29 intermediate revisions by 12 users not shown) | |||
Line 1:
In [[mathematics]], the '''scale convolution''' of two [[Function (mathematics)|functions]] <math>s(t)</math> and <math>r(t)</math>, also known as their '''logarithmic convolution''' or '''log-volution'''<ref>{{Cite book|title= An Introduction to Exotic Option Pricing | series = Chapman and Hall/CRC Financial Mathematics Series | author = Peter Buchen | publisher = CRC Press| date = 2012 | ISBN = 9781420091021}}</ref> is defined as the function<ref name=pm>{{Cite web|url=https://planetmath.org/logarithmicconvolution|work=Planet Math| title = logarithmic convolution |date=22 March 2013|access-date=15 September 2024}}</ref>
:<math> s *_l r(t) = r *_l s(t) = \int_0^\infty s\left(\frac{t}{a}\right)r(a) \, \frac{da}{a}</math>▼
▲:<math> s *_l r(t) = r *_l s(t) = \int_0^\infty s\left(\frac{t}{a}\right)r(a) \frac{da}{a}</math>
when this quantity exists.
==Results==
The logarithmic convolution can be related to the ordinary [[convolution]] by changing the [[Variable (mathematics)|variable]] from <math>t</math> to <math>v = \log t</math>:<ref name=pm />
: <math>
s *_l r(t) & = \int_0^\infty s \left(\frac{t}{a}\right)r(a) \, \frac{da}{a} & =
\int_{-\infty}^\infty s\left(\frac{t}{e^u}\right) r(e^u) \, du
\end{align}</math>
Define <math>f(v) = s(e^v)</math> and <math>g(v) = r(e^v)</math> and let <math>v = \log t</math>, then
:<math> s *_l r(v) = f * g(v) = g * f(v) = r *_l s(v).
==See also==
* [[Mellin transform]]
==References==
{{Reflist}}
==External links==
{{Authority control}}
{{Use dmy dates|date=September 2024}}
▲{{PlanetMath attribution|id=5995|title=logarithmic convolution}}
[[Category:Logarithms]]
|