Content deleted Content added
m Import from Planet Math |
Wikipedia:Articles for deletion/Logarithmic convolution closed as speedy keep (XFDcloser) |
||
(38 intermediate revisions by 18 users not shown) | |||
Line 1:
In [[mathematics]], the '''scale convolution''' of two [[Function (mathematics)|functions]] <math>s(t)</math> and <math>r(t)</math>, also known as their '''logarithmic convolution''' or '''log-volution'''<ref>{{Cite book|title= An Introduction to Exotic Option Pricing | series = Chapman and Hall/CRC Financial Mathematics Series | author = Peter Buchen | publisher = CRC Press| date = 2012 | ISBN = 9781420091021}}</ref> is defined as the function<ref name=pm>{{Cite web|url=https://planetmath.org/logarithmicconvolution|work=Planet Math| title = logarithmic convolution |date=22 March 2013|access-date=15 September 2024}}</ref>
:<math> s *
▲<math> s *</math><sub>1</sub><math> r(t) = r *</math><sub>1</sub><math> s(t) = \int_0^\infty s(\frac{t}{a})r(a) \frac{da}{a}</math>
when this quantity exists.
==Results==
The logarithmic convolution can be related to the ordinary [[convolution]] by changing the [[Variable (mathematics)|variable]] from <math>t</math> to <math>v = \log t</math>:<ref name=pm />
: <math>\begin{align}
s *_l r(t) & = \
& =
& = \int_{-\infty}^\infty s \left(e^{\log t - u}\right)r(e^u) \, du.
\end{align}</math>
Define <math>f(v) = s(e^v)</math> and <math>g(v) = r(e^v)</math> and let <math>v = \log t</math>, then
<math></math> s \ast_l r(v) = f \ast g(v) = g \ast f(v) = r \ast_l s(v). <math></math><br>▼
▲:<
{{planetmath|id=5995|title=logarithmic convolution}} ▼
[[Category:mathematics]]▼
==See also==
* [[Mellin transform]]
==References==
{{Reflist}}
==External links==
▲{{
{{Authority control}}
{{Use dmy dates|date=September 2024}}
|