Graph algebra: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Misc citation tidying. | Use this bot. Report bugs. | Suggested by SemperIocundus | #UCB_webform
ce
 
(9 intermediate revisions by 8 users not shown)
Line 1:
{{about|the mathematical concept of Graph Algebras|"Graph Algebra" as used in the social sciences|Graph algebra (social sciences)}}
{{Use shortened footnotes|date=May 2021}}
 
__NOTOC__
In [[mathematics]], especially in the fields of [[universal algebra]] and [[graph theory]], a '''graph algebra''' is a way of giving a [[directed graph]] an [[algebraic structure]]. It was introduced by McNulty and Shallon,{{rsfn|McNultyShallon1983McNulty|Shallon|1983|loc=[https://archive.org/details/universalalgebra0000unse/page/206 pp. 206–231]}} and has seen many uses in the field of universal algebra since then.
 
== Definition ==
Line 10:
 
== Applications ==
This notion has made it possible to use the methods of graph theory in universal algebra and several other directionsareas of [[discrete mathematics]] and [[computer science]]. Graph algebras have been used, for example, in constructions concerning [[Dual (category theory)|dualities]],{{rsfn|Davey|Idziak|Lampe|McNulty|2000|DaveyETAL2000pp=145–172}} [[equational theory|equational theories]],{{rsfn|Pöschel1989Pöschel|1989|pp=273–282}} [[flatness (systems theory)|flatness]],{{rsfn|Delić2001Delić|2001|pp=453–469}} [[groupoid (algebra)|groupoid]] [[ring (mathematics)|rings]],{{rsfn|Lee1991Lee|1991|pp=117–121}} [[topology|topologies]],{{rsfn|Lee1988Lee|1988|pp=147–156}} [[variety (universal algebra)|varieties]],{{rsfn|Oates-Williams1984Williams|1984|pp=175–177}} [[finite -state automatamachine]]s,{{rsfn|KelarevMillerSokratova2005Kelarev|Miller|Sokratova|2005|pp=46–54}} [[finite state machine]]s,{{rsfn|Kelarev|Sokratova|2003|KelarevSokratova2003pp=31–43}}
tree languages and [[tree automata]],{{rsfn|KelarevSokratova2001Kelarev|Sokratova|2001|pp=305–311}} etc.
 
== See also ==
Line 17:
* [[Incidence algebra]]
* [[Path algebra]]
 
==Citations==
{{Reflist|20em}}
 
==Works cited==
{{refbegin|35em}}
*{{Cite journal | title = Dualizability and graph algebras
{{reflist|refs=
| last1 = Davey | first1 = Brian A.
<ref name=McNultyShallon1983>{{Cite book |last1=McNulty |first1=George F. |last2=Shallon |first2=Caroline R. |year=1983 |chapter=Inherently nonfinitely based finite algebras |editor-last1=Freese |editor-first1=Ralph S. |editor-last2=Garcia |editor-first2=Octavio C. |title=Universal algebra and lattice theory (Puebla, 1982) |volume=1004 |series=Lecture Notes in Math. |___location=Berlin, New York City |publisher=[[Springer-Verlag]] |at=[https://archive.org/details/universalalgebra0000unse/page/206 pp. 206–231] |isbn=9783540123293 |doi=10.1007/BFb0063439 |hdl=10338.dmlcz/102157 |mr=716184 |hdl-access=free |url=https://archive.org/details/universalalgebra0000unse |via=[[Internet Archive]]}}</ref>
| last2 = Idziak | first2 = Pawel M.
 
| last3 = Lampe | first3 = William A.
<ref name=DaveyETAL2000>{{Cite journal |last1=Davey | first1=Brian A. |last2=Idziak |first2=Pawel M. |last3=Lampe |first3=William A. |last4=McNulty |first4=George F. |date=2000 |title=Dualizability and graph algebras |journal=[[Discrete Mathematics (journal)|Discrete Mathematics]] |volume=214 |issue=1 |pages=145–172 |issn=0012-365X |doi=10.1016/S0012-365X(99)00225-3 |mr=1743633 }}</ref>
| last4 = McNulty | first4 = George F.
 
| journal = [[Discrete Mathematics (journal)|Discrete Mathematics]]
<ref name=Pöschel1989>{{Cite journal |last=Pöschel |first=R. |date=1989 |title=The equational logic for graph algebras |journal=Z. Math. Logik Grundlag. Math. |volume=35 |issue=3 |pages=273–282 |doi=10.1002/malq.19890350311 |mr=1000970}}</ref>
| year = 2000 | volume = 214 | issue = 1 | pages = 145–172
 
| doi = 10.1016/S0012-365X(99)00225-3 | issn = 0012-365X | mr = 1743633
<ref name=Delić2001>{{Cite journal |last=Delić |first=Dejan |date=2001 |title=Finite bases for flat graph algebras |journal=Journal of Algebra |volume=246 |issue=1 |pages=453–469 |issn=0021-8693 |doi=10.1006/jabr.2001.8947 |mr=1872631}}</ref>
| doi-access = free }}
 
*{{Cite journal | title = Finite bases for flat graph algebras
<ref name=Lee1991>{{Cite journal |last=Lee |first=S.-M. |date=1991 |title=Simple graph algebras and simple rings |journal=Southeast Asian Bull. Math. |volume=15 |issue=2 |pages=117–121 |issn=0129-2021 |mr=1145431}}</ref>
| last = Delić | first = Dejan
 
| journal = [[Journal of Algebra]]
<ref name=Lee1988>{{Cite journal |last=Lee |first=S.-M. |date=1988 |title=Graph algebras which admit only discrete topologies |journal=Congr. Numer. |volume=64 |pages=147–156 |issn=1736-6046 |mr=0988675}}</ref>
| year = 2001 | volume = 246 | issue = 1 | pages = 453–469
 
| doi = 10.1006/jabr.2001.8947 | issn = 0021-8693 | mr = 1872631
<ref name=Oates-Williams1984>{{Cite journal |last=Oates-Williams |first=Sheila |date=1984 |title=On the variety generated by Murskiĭ's algebra |journal=Algebra Universalis |volume=18 |issue=2 |pages=175–177 |issn=0002-5240 |doi=10.1007/BF01198526 |mr=743465 |s2cid=121598599}}</ref>
| doi-access = free
 
}}
<ref name=KelarevMillerSokratova2005>{{Cite journal |last1=Kelarev |first1=A.V. |last2=Miller |first2=M. | last3=Sokratova |first3=O.V. |date=2005 |title=Languages recognized by two-sided automata of graphs |journal=Proc. Estonian Akademy of Science |volume=54 |issue=1 |pages=46–54 |issn=1736-6046 |mr=2126358}}</ref>
*{{Cite journal | title = Languages recognized by two-sided automata of graphs
 
| last1 = Kelarev | first1 = A.V.
<ref name=KelarevSokratova2003>{{Cite journal |last1=Kelarev |first1=A.V. |last2=Sokratova |first2=O.V. |date=2003 |title=On congruences of automata defined by directed graphs |journal=Theoretical Computer Science |volume=301 |issue=1–3 |pages=31–43 |doi=10.1016/S0304-3975(02)00544-3 |issn=0304-3975 |mr=1975219 |url=https://eprints.utas.edu.au/157/1/congruences.pdf }}</ref>
| last2 = Miller | first2 = M.
 
| last3 = Sokratova | first3 = O.V.
<ref name=KelarevSokratova2001>{{Cite journal |last1=Kelarev |first1=A.V. |last2=Sokratova |first2=O.V. |date=2001 |title=Directed graphs and syntactic algebras of tree languages |journal=J. Automata, Languages & Combinatorics |volume=6 |issue=3 |pages=305–311 |issn=1430-189X |mr=1879773}}</ref>
| journal = Proc. Estonian Akademy of Science
}}{{refend}}
| year = 2005 | volume = 54 | issue = 1 | pages = 46–54
| issn = 1736-6046 | mr = 2126358
}}
*{{Cite journal | title = Directed graphs and syntactic algebras of tree languages
| last1 = Kelarev | first1 = A.V.
| last2 = Sokratova | first2 = O.V.
| journal = J. Automata, Languages & Combinatorics
| year = 2001 | volume = 6 | issue = 3 | pages = 305–311
| issn = 1430-189X | mr = 1879773
}}
*{{Cite journal | title = On congruences of automata defined by directed graphs
| last1 = Kelarev | first1 = A.V.
| last2 = Sokratova | first2 = O.V.
| journal = Theoretical Computer Science
| year = 2003 | volume = 301 | issue = 1–3 | pages = 31–43
| url = https://eprints.utas.edu.au/157/1/congruences.pdf
| doi = 10.1016/S0304-3975(02)00544-3 | issn = 0304-3975 | mr = 1975219
}}
*{{Cite journal | title = Graph algebras which admit only discrete topologies
| last = Lee | first = S.-M.
| journal = Congr. Numer
| year = 1988 | volume = 64 | pages = 147–156
| issn = 1736-6046 | mr = 0988675
}}
*{{Cite journal | title = Simple graph algebras and simple rings
| last = Lee | first = S.-M.
| journal = Southeast Asian Bull. Math
| year = 1991 | volume = 15 | issue = 2 | pages = 117–121
| issn = 0129-2021 | mr = 1145431
}}
*{{Cite book| chapter = Inherently nonfinitely based finite algebras
| last1 = McNulty | first1 = George F.
| last2 = Shallon | first2 = Caroline R.
| year = 1983
| title = Universal algebra and lattice theory (Puebla, 1982)
| editor1-last = Freese | editor1-first = Ralph S.
| editor2-last = Garcia | editor2-first = Octavio C.
| publisher = [[Springer-Verlag]] | ___location = Berlin, New York City
| volume = 1004 | series = Lecture Notes in Math.
| at = [https://archive.org/details/universalalgebra0000unse/page/206 pp. 206–231]
| url = https://archive.org/details/universalalgebra0000unse | via = [[Internet Archive]]
| doi = 10.1007/BFb0063439 | hdl = 10338.dmlcz/102157 | isbn = 978-354012329-3 | mr = 716184
| hdl-access = free
}}
*{{Cite journal | title = On the variety generated by Murskiĭ's algebra
| last = Oates-Williams | first = Sheila
| author-link = Sheila Oates Williams
| journal = [[Algebra Universalis]]
| year = 1984 | volume = 18 | issue = 2 | pages = 175–177
| doi = 10.1007/BF01198526 | issn = 0002-5240 | mr = 743465 | s2cid = 121598599
}}
*{{Cite journal | title = The equational logic for graph algebras
| last = Pöschel | first = R.
| journal = Z. Math. Logik Grundlag. Math.
| year = 1989 | volume = 35 | issue = 3 | pages = 273–282
| doi = 10.1002/malq.19890350311 | mr = 1000970
}}
{{refend}}
 
==Further reading==
{{refbegin}}
*{{Cite book| title = Graph Algebras and Automata
* {{Cite book |last=Kelarev |first=A.V. |date=2003 |title=''Graph Algebras and Automata'' |place=New York City |publisher=[[Marcel Dekker]] |isbn=0-8247-4708-9 |mr=2064147 |url-access=registration |via=[[Internet Archive]] |url=https://archive.org/details/graphalgebrasaut0000kela}}
| last = Kelarev | first = A.V. | year = 2003
* {{cite journal |last1=Kiss |first1=E.W. |last2=Pöschel |first2=R. |last3=Pröhle |first3=P. |date=1990 |title=Subvarieties of varieties generated by graph algebras |journal=Acta Sci. Math. |volume=54 |issue=1–2 |pages=57–75 |mr=1073419}}
| publisher = [[Marcel Dekker]] | place = New York City
* {{Cite book |last=Raeburn |first=Iain |date=2005 |title=Graph algebras |publisher=[[American Mathematical Society]] |isbn=9780821836606}}
| url = https://archive.org/details/graphalgebrasaut0000kela | url-access = registration | via = [[Internet Archive]]
| isbn = 0-8247-4708-9 | mr = 2064147
| ref = none
}}
*{{cite journal | title = Subvarieties of varieties generated by graph algebras
| last1 = Kiss | first1 = E.W.
| last2 = Pöschel | first2 = R.
| last3 = Pröhle | first3 = P.
| journal = Acta Sci. Math.
| year = 1990 | volume = 54 | issue = 1–2 | pages = 57–75
| mr = 1073419
| ref = none
}}
*{{Cite book| title = Graph algebras
| last = Raeburn | first = Iain | year = 2005
| publisher = [[American Mathematical Society]]
| isbn = 978-082183660-6
| ref = none
}}
{{refend}}