Graph algebra: Difference between revisions

Content deleted Content added
Bluelinking 2 books for verifiability.) #IABot (v2.1alpha3
ce
 
(20 intermediate revisions by 15 users not shown)
Line 1:
{{about|the mathematical concept of Graph Algebras|"Graph Algebra" as used in the social sciences|Graph algebra (social sciences)}}
{{Use shortened footnotes|date=May 2021}}
 
In [[mathematics]], especially in the fields of [[universal algebra]] and [[graph theory]], a '''graph algebra''' is a way of giving a [[directed graph]] an [[algebraic structure]]. It was introduced inby McNulty and Shallon,{{harvsfn|McNulty|Shallon|1983|loc=[https://archive.org/details/universalalgebra0000unse/page/206 pp. 206–231]}}, and has seen many uses in the field of universal algebra since then.
 
== Definition ==
Let {{math|1=''D'' = (''V'', ''E'')}} be a directed [[graph (data structure)|graph]], and {{math|0}} an element not in {{mvar|V}}. The graph algebra associated with {{mvar|D}} has underlying set <math>V \cup \{0\}</math>, and is equipped with a multiplication defined by the rules
 
* {{math|1=''xy'' = ''x''}} if <math>x,y \in V</math> and <math>(x,y) \in E</math>,
Let <math>D=(V,E)</math> be a directed [[graph (data structure)|graph]], and <math>0</math> an element not in <math>V</math>. The graph algebra associated with <math>D</math> is the set <math>V \cup \{0\}</math> equipped with multiplication defined by the rules
* <{{math>|1=''xy'' = x</math>0}} if <math>x,y \in V, \cup \{0\}</math> and <math>(x,y)\innotin E</math>.
* <math>xy = 0</math> if <math>x,y\in V\cup \{0\},(x,y)\notin E</math>.
 
== Applications ==
This notion has made it possible to use the methods of graph theory in universal algebra and several other areas of [[discrete mathematics]] and [[computer science]]. Graph algebras have been used, for example, in constructions concerning [[Dual (category theory)|dualities]],{{sfn|Davey|Idziak|Lampe|McNulty|2000|pp=145–172}} [[equational theory|equational theories]],{{sfn|Pöschel|1989|pp=273–282}} [[flatness (systems theory)|flatness]],{{sfn|Delić|2001|pp=453–469}} [[groupoid (algebra)|groupoid]] [[ring (mathematics)|rings]],{{sfn|Lee|1991|pp=117–121}} [[topology|topologies]],{{sfn|Lee|1988|pp=147–156}} [[variety (universal algebra)|varieties]],{{sfn|Oates-Williams|1984|pp=175–177}} [[finite-state machine]]s,{{sfn|Kelarev|Miller|Sokratova|2005|pp=46–54}}{{sfn|Kelarev|Sokratova|2003|pp=31–43}}
 
tree languages and [[tree automata]],{{sfn|Kelarev|Sokratova|2001|pp=305–311}} etc.
This notion has made it possible to use the methods of graph theory in universal algebra and several other directions of discrete mathematics and computer science. Graph algebras have been used, for example, in constructions concerning dualities {{harv|Davey|Idziak|Lampe|McNulty|2000}}, [[equational theory|equational theories]] {{harv|Pöschel|1989}}, [[flatness (systems theory)|flatness]] {{harv|Delić|2001}}, [[groupoid (algebra)|groupoid]] [[ring (mathematics)|ring]]s {{harv|Lee|1991}}, [[topology|topologies]] {{harv|Lee|1988}}, [[variety (universal algebra)|varieties]] {{harv|Oates-Williams|1984}}, [[finite state automata]] {{harv|Kelarev|Miller|Sokratova|2005}}, [[finite state machine]]s {{harv|Kelarev & Sokratova|2003}},
tree languages and [[tree automata]] {{harv|Kelarev|Sokratova|2001}} etc.
 
== See also ==
* [[Group algebra (disambiguation)]]
* [[Incidence algebra]]
* [[Path algebra]]
 
==ReferencesCitations==
{{Reflist|20em}}
*{{Citation | last1=Davey | first1=Brian A. | last2=Idziak | first2=Pawel M. | last3=Lampe | first3=William A. | last4=McNulty | first4=George F. | title=Dualizability and graph algebras | doi=10.1016/S0012-365X(99)00225-3 |mr=1743633 | year=2000 | journal=[[Discrete Mathematics (journal)|Discrete Mathematics]] | issn=0012-365X | volume=214 | issue=1 | pages=145–172}}
 
*{{Citation | last1=Delić | first1=Dejan | title=Finite bases for flat graph algebras | doi=10.1006/jabr.2001.8947 |mr=1872631 | year=2001 | journal=Journal of Algebra | issn=0021-8693 | volume=246 | issue=1 | pages=453–469}}
==Works cited==
*{{Citation | last1=McNulty | first1=George F. | last2=Shallon | first2=Caroline R. | title=Universal algebra and lattice theory (Puebla, 1982) | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | series=Lecture Notes in Math. | doi=10.1007/BFb0063439 | mr=716184 | year=1983 | volume=1004 | chapter=Inherently nonfinitely based finite algebras | pages=[https://archive.org/details/universalalgebra0000unse/page/206 206–231] | isbn=978-3-540-12329-3 | hdl=10338.dmlcz/102157 | url=https://archive.org/details/universalalgebra0000unse/page/206 }}
{{refbegin|35em}}
*{{Citation | last1=Kelarev | first1=A.V. | title=''Graph Algebras and Automata'' | publisher=[[Marcel Dekker]] | year=2003 | place=New York | isbn=0-8247-4708-9 | mr=2064147 | url-access=registration | url=https://archive.org/details/graphalgebrasaut0000kela }}
*{{Cite journal | title = Dualizability and graph algebras
*{{Citation | last1=Kelarev | first1=A.V. | last2=Sokratova | first2=O.V. | year=2003 | title=On congruences of automata defined by directed graphs | journal=Theoretical Computer Science | volume=301 | issue=1&ndash;3 |mr=1975219 | pages=31&ndash;43 | issn=0304-3975 | doi=10.1016/S0304-3975(02)00544-3 }}
| last1 = Davey | first1 = Brian A.
*{{Citation | last1=Kelarev | first1=A.V. | last2=Miller | first2=M. | last3=Sokratova | first3=O.V. | year=2005 | title=Languages recognized by two-sided automata of graphs | journal=Proc. Estonian Akademy of Science | volume=54 | issue =1 | pages=46&ndash;54 |mr=2126358 | issn=1736-6046 }}
| last2 = Idziak | first2 = Pawel M.
*{{Citation | last1=Kelarev | first1=A.V. | last2=Sokratova | first2=O.V. | year=2001 | title=Directed graphs and syntactic algebras of tree languages | journal=J. Automata, Languages & Combinatorics | volume=6 | issue=3 | pages=305&ndash;311 |mr=1879773 | issn=1430-189X }}
| last3 = Lampe | first3 = William A.
*{{Citation | last1=Kiss | first1=E.W. | last2=Pöschel | first2=R. | last3=Pröhle | first3=P. | year=1990 | title=Subvarieties of varieties generated by graph algebras | journal=Acta Sci. Math. (Szeged) | volume=54 | issue=1&ndash;2 | pages=57&ndash;75 |mr=1073419 }}
| last4 = McNulty | first4 = George F.
*{{Citation | last1=Lee | first1=S.-M. | year=1988 | title=Graph algebras which admit only discrete topologies | journal=Congr. Numer. | volume=64 | pages=147&ndash;156 |mr=0988675 | issn=1736-6046 }}
| journal = [[Discrete Mathematics (journal)|Discrete Mathematics]]
*{{Citation | last1=Lee | first=S.-M. | year=1991 | title=Simple graph algebras and simple rings | journal=Southeast Asian Bull. Math. | volume=15 | issue=2 | pages=117&ndash;121 |mr=1145431 | issn=0129-2021 }}
| year = 2000 | volume = 214 | issue = 1 | pages = 145–172
*{{Citation | last1=Oates-Williams | first1=Sheila | title=On the variety generated by Murskiĭ's algebra | doi=10.1007/BF01198526 |mr=743465 | year=1984 | journal=Algebra Universalis | issn=0002-5240 | volume=18 | issue=2 | pages=175–177}}
| doi = 10.1016/S0012-365X(99)00225-3 | issn = 0012-365X | mr = 1743633
*{{Citation | doi=10.1002/malq.19890350311 | last1=Pöschel | first1=R | year=1989 | title=The equational logic for graph algebras | journal=Z. Math. Logik Grundlag. Math. | volume=35 | issue=3 | pages=273&ndash;282 |mr=1000970 }}
| doi-access = free }}
*{{Cite journal | title = Finite bases for flat graph algebras
| last = Delić | first = Dejan
| journal = [[Journal of Algebra]]
| year = 2001 | volume = 246 | issue = 1 | pages = 453–469
| doi = 10.1006/jabr.2001.8947 | issn = 0021-8693 | mr = 1872631
| doi-access = free
}}
*{{Cite journal | title = Languages recognized by two-sided automata of graphs
| last1 = Kelarev | first1 = A.V.
| last2 = Miller | first2 = M.
| last3 = Sokratova | first3 = O.V.
| journal = Proc. Estonian Akademy of Science
| year = 2005 | volume = 54 | issue = 1 | pages = 46–54
| issn = 1736-6046 | mr = 2126358
}}
*{{Cite journal | title = Directed graphs and syntactic algebras of tree languages
| last1 = Kelarev | first1 = A.V.
| last2 = Sokratova | first2 = O.V.
| journal = J. Automata, Languages & Combinatorics
| year = 2001 | volume = 6 | issue = 3 | pages = 305–311
| issn = 1430-189X | mr = 1879773
}}
*{{Cite journal | title = On congruences of automata defined by directed graphs
| last1 = Kelarev | first1 = A.V.
| last2 = Sokratova | first2 = O.V.
| journal = Theoretical Computer Science
| year = 2003 | volume = 301 | issue = 1–3 | pages = 31–43
| url = https://eprints.utas.edu.au/157/1/congruences.pdf
| doi = 10.1016/S0304-3975(02)00544-3 | issn = 0304-3975 | mr = 1975219
}}
*{{Cite journal | title = Graph algebras which admit only discrete topologies
| last = Lee | first = S.-M.
| journal = Congr. Numer
| year = 1988 | volume = 64 | pages = 147–156
| issn = 1736-6046 | mr = 0988675
}}
*{{Cite journal | title = Simple graph algebras and simple rings
| last = Lee | first = S.-M.
| journal = Southeast Asian Bull. Math
| year = 1991 | volume = 15 | issue = 2 | pages = 117–121
| issn = 0129-2021 | mr = 1145431
}}
*{{Cite book| chapter = Inherently nonfinitely based finite algebras
| last1 = McNulty | first1 = George F.
| last2 = Shallon | first2 = Caroline R.
| year = 1983
| title = Universal algebra and lattice theory (Puebla, 1982)
| editor1-last = Freese | editor1-first = Ralph S.
| editor2-last = Garcia | editor2-first = Octavio C.
| publisher = [[Springer-Verlag]] | ___location = Berlin, New York City
| volume = 1004 | series = Lecture Notes in Math.
| at = [https://archive.org/details/universalalgebra0000unse/page/206 pp. 206–231]
| url = https://archive.org/details/universalalgebra0000unse | via = [[Internet Archive]]
| doi = 10.1007/BFb0063439 | hdl = 10338.dmlcz/102157 | isbn = 978-354012329-3 | mr = 716184
| hdl-access = free
}}
*{{Cite journal | title = On the variety generated by Murskiĭ's algebra
| last = Oates-Williams | first = Sheila
| author-link = Sheila Oates Williams
| journal = [[Algebra Universalis]]
| year = 1984 | volume = 18 | issue = 2 | pages = 175–177
| doi = 10.1007/BF01198526 | issn = 0002-5240 | mr = 743465 | s2cid = 121598599
}}
*{{Cite journal | title = The equational logic for graph algebras
| last = Pöschel | first = R.
| journal = Z. Math. Logik Grundlag. Math.
| year = 1989 | volume = 35 | issue = 3 | pages = 273–282
| doi = 10.1002/malq.19890350311 | mr = 1000970
}}
{{refend}}
 
==Further reading==
{{refbegin}}
*{{Citation | title=Graph algebras | author=Raeburn, Iain | authorlink=Iain Raeburn | year=2005 | publisher=[[American Mathematical Society]] | isbn=978-0-8218-3660-6}}
*{{Cite book| title = Graph Algebras and Automata
| last = Kelarev | first = A.V. | year = 2003
| publisher = [[Marcel Dekker]] | place = New York City
| url = https://archive.org/details/graphalgebrasaut0000kela | url-access = registration | via = [[Internet Archive]]
| isbn = 0-8247-4708-9 | mr = 2064147
| ref = none
}}
*{{cite journal | title = Subvarieties of varieties generated by graph algebras
| last1 = Kiss | first1 = E.W.
| last2 = Pöschel | first2 = R.
| last3 = Pröhle | first3 = P.
| journal = Acta Sci. Math.
| year = 1990 | volume = 54 | issue = 1–2 | pages = 57–75
| mr = 1073419
| ref = none
}}
*{{Cite book| title = Graph algebras
| last = Raeburn | first = Iain | year = 2005
| publisher = [[American Mathematical Society]]
| isbn = 978-082183660-6
| ref = none
}}
{{refend}}
 
[[Category:Graph theory]]
[[Category:Universal algebra]]
[[Category:Graph theory]]