Content deleted Content added
m fix spacing around math (via WP:JWB) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1:
In [[mathematics]], particularly [[functional analysis]], spaces of [[linear map]]s between two [[vector space]]s can be endowed with a variety of [[Topology (structure)|topologies]]. Studying space of linear maps and these topologies can give insight into the spaces themselves.
The article [[operator topologies]] discusses topologies on spaces of linear maps between [[normed space]]s, whereas this article discusses topologies on such spaces in the more general setting of [[topological
==Topologies of uniform convergence on arbitrary spaces of maps==
Line 69:
<math display=block>\mathcal{W}(G, U) ~:=~ \left\{(u, v) \in Y^T \times Y^T ~:~ (u(g), v(g)) \in U \; \text{ for every } g \in G\right\}.</math>
Given <math>G \subseteq T,</math> the family of all sets <math>\mathcal{W}(G, U)</math> as <math>U</math> ranges over any fundamental system of entourages of <math>Y</math> forms a fundamental system of entourages for a uniform structure on <math>Y^T</math> called {{em|the uniformity of uniform converges on <math>G</math>}} or simply {{em|the <math>G</math>-convergence uniform structure}}.{{sfn|Grothendieck|1973|pp=1-13}}
The {{em|<math>\mathcal{G}</math>-convergence uniform structure}} is the least upper bound of all <math>G</math>-convergence uniform structures as <math>G \in \mathcal{G}</math> ranges over <math>\mathcal{G}.</math>{{sfn|Grothendieck|1973|pp=1-13}}
'''Nets and uniform convergence'''
Line 181:
|whenever <math>u : X \to Y</math> is a linear map then <math>u</math> restricted to every set <math>G \in \mathcal{G}</math> is continuous implies that <math>u</math> is continuous,
}}</li>
<li>If <math>X</math> is a Mackey space then <math>L_{\mathcal{G}}(X; Y)</math> is complete if and only if both <math>X^{\prime}_{\mathcal{G}}</math> and <math>Y</math> are complete.</li>
<li>If <math>X</math> is [[Barrelled space|barrelled]] then <math>L_{\mathcal{G}}(X; Y)</math> is Hausdorff and [[quasi-complete]].</li>
<li>Let <math>X</math> and <math>Y</math> be TVSs with <math>Y</math> [[quasi-complete]] and assume that (1) <math>X</math> is [[Barreled space|barreled]], or else (2) <math>X</math> is a [[Baire space]] and <math>X</math> and <math>Y</math> are locally convex. If <math>\mathcal{G}</math> covers <math>X</math> then every closed [[Equicontinuous linear maps|equicontinuous subset]] of <math>L(X; Y)</math> is complete in <math>L_{\mathcal{G}}(X; Y)</math> and <math>L_{\mathcal{G}}(X; Y)</math> is quasi-complete.{{sfn|Schaefer|Wolff|1999|p=83}}</li>
Line 349:
==𝒢-ℋ topologies on spaces of bilinear maps==
We will let <math>\mathcal{B}(X, Y; Z)</math> denote the space of separately continuous bilinear maps and <math>B(X, Y; Z)</math> denote the space of continuous bilinear maps, where <math>X, Y,</math> and <math>Z</math> are topological vector space over the same field (either the real or complex numbers).
In an analogous way to how we placed a topology on <math>L(X; Y)</math> we can place a topology on <math>\mathcal{B}(X, Y; Z)</math> and <math>B(X, Y; Z)</math>.
Let <math>\mathcal{G}</math> (respectively, <math>\mathcal{H}</math>) be a family of subsets of <math>X</math> (respectively, <math>Y</math>) containing at least one non-empty set.
Let <math>\mathcal{G} \times \mathcal{H}</math> denote the collection of all sets <math>G \times H</math> where <math>G \in \mathcal{G},</math> <math>H \in \mathcal{H}.</math>
We can place on <math>Z^{X \times Y}</math> the <math>\mathcal{G} \times \mathcal{H}</math>-topology, and consequently on any of its subsets, in particular on <math>B(X, Y; Z)</math> and on <math>\mathcal{B}(X, Y; Z)</math>.
This topology is known as the '''<math>\mathcal{G}-\mathcal{H}</math>-topology''' or as the '''topology of uniform convergence on the products <math>G \times H</math> of <math>\mathcal{G} \times \mathcal{H}</math>'''.
However, as before, this topology is not necessarily compatible with the vector space structure of <math>\mathcal{B}(X, Y; Z)</math> or of <math>B(X, Y; Z)</math> without the additional requirement that for all bilinear maps, <math>b</math> in this space (that is, in <math>\mathcal{B}(X, Y; Z)</math> or in <math>B(X, Y; Z)</math>) and for all <math>G \in \mathcal{G}</math> and <math>H \in \mathcal{H},</math> the set <math>b(G, H)</math> is bounded in <math>X.</math>
If both <math>\mathcal{G}</math> and <math>\mathcal{H}</math> consist of bounded sets then this requirement is automatically satisfied if we are topologizing <math>B(X, Y; Z)</math> but this may not be the case if we are trying to topologize <math>\mathcal{B}(X, Y; Z)</math>.
The <math>\mathcal{G}-\mathcal{H}</math>-topology on <math>\mathcal{B}(X, Y; Z)</math> will be compatible with the vector space structure of <math>\mathcal{B}(X, Y; Z)</math> if both <math>\mathcal{G}</math> and <math>\mathcal{H}</math> consists of bounded sets and any of the following conditions hold:
* <math>X</math> and <math>Y</math> are barrelled spaces and <math>Z</math> is locally convex.
|