Topologies on spaces of linear maps: Difference between revisions

Content deleted Content added
m fix spacing around math (via WP:JWB)
 
(329 intermediate revisions by 45 users not shown)
Line 1:
In [[mathematics]], particularly [[functional analysis]], spaces of [[linear map]]s between two [[vector space]]s can be endowed with a variety of [[Topology (structure)|topologies]]. Studying space of linear maps and these topologies can give insight into the spaces themselves.
{{no footnotes|date=January 2014}}
In [[mathematics]], a '''[[linear map]]''' (also called a '''linear mapping''', '''linear [[Transformation (function)|transformation]]''' or, in some contexts, '''[[linear function]]''') is a [[function (mathematics)|mapping]] {{math|''V'' ↦ ''W''}} between two [[Module (mathematics)|module]]s (including [[vector space]]s) that preserves the operations of addition and [[scalar (mathematics)|scalar]] multiplication.
 
The article [[operator topologies]] discusses topologies on spaces of linear maps between [[normed space]]s, whereas this article discusses topologies on such spaces in the more general setting of [[topological vector space]]s (TVSs).
By studying the linear maps between two modules one can gain insight into their structures. If the modules have additional structure, like [[topology|topologies]] or [[Bornological space|bornolgies]], then one can study the subspace of linear maps that preserve this structure.
 
==Topologies of uniform convergence on arbitrary spaces of maps==
=Spaces of Continuous Linear Maps=
 
Throughout, the following is assumed:
Throughout this section we will assume that <math>X</math> and <math>Y</math> are [[topological vector space]]s and we will let <math>L(X, Y)</math>, denote the vector space of all continuous linear maps from <math>X</math> and <math>Y</math>.
<ol>
<li><math>T</math> is any non-empty set and <math>\mathcal{G}</math> is a non-empty collection of subsets of <math>T</math> [[Directed set|directed]] by subset inclusion (i.e. for any <math>G, H \in \mathcal{G}</math> there exists some <math>K \in \mathcal{G}</math> such that <math>G \cup H \subseteq K</math>).</li>
<li><math>Y</math> is a [[topological vector space]] (not necessarily Hausdorff or locally convex).</li>
<li><math>\mathcal{N}</math> is a basis of neighborhoods of 0 in <math>Y.</math></li>
<li><math>F</math> is a vector subspace of <math>Y^T = \prod_{t \in T} Y,</math><ref group=note>Because <math>T</math> is just a set that is not yet assumed to be endowed with any vector space structure, <math>F \subseteq Y^T</math> should not yet be assumed to consist of linear maps, which is a notation that currently can not be defined.</ref> which denotes the set of all <math>Y</math>-valued functions <math>f : T \to Y</math> with ___domain <math>T.</math></li>
</ol>
 
==G=𝒢-topologiestopology===
 
The following sets will constitute the basic open subsets of topologies on spaces of linear maps.
We can form topologies on <math>L(X, Y)</math> in the following way. Let <math>\mathcal{G}</math> be a set of subsets of <math>X</math> and let <math>\mathcal{N}</math> be a basis of neighborhoods of 0 in <math>Y</math>. Then we can define a topology on <math>L(X, Y)</math> by defining the neighborhoods of 0 in <math>L_{\mathcal{G}}(X, Y)</math> to be
:For any subsets <math>\mathcal{U}(G, V) = \{fsubseteq \inT</math> L(X,and Y) : f(G)<math>N \subsubseteq N\}Y,</math> let
<math display="block">\mathcal{U}(G, N) := \{f \in F : f(G) \subseteq N\}.</math>
as ''G'' and ''N'' range over all <math>G \in \mathcal{G}</math> and <math>N \in \mathcal{N}</math>. This topology is known as the '''<math>\mathcal{G}</math>-topology on <math>L(X, Y)</math>''' or as the '''topology of uniform convergence on the sets in <math>\mathcal{G}</math>''' and <math>L(X, Y)</math> with this topology is and denoted by <math>L_{\mathcal{G}}(X, Y)</math>.
 
The family
The <math>\mathcal{G}</math>-topology on <math>L(X, Y)</math> is compatible with the vector space structure of <math>L(X, Y)</math> (that is, <math>L_{\mathcal{G}}(X, Y)</math> is a topological vector space) if and only if for all <math>G \in \mathcal{G}</math> and all <math>f \in L(X, Y)</math> the set <math>f(G)</math> is bounded in <math>Y</math>; we will assume this to be the case for the rest of the article. Note that in particular, this is the case if <math>\mathcal{G}</math> consists of (von-Neumann) bounded subsets of <math>X</math>.
<math display="block">\{ \mathcal{U}(G, N) : G \in \mathcal{G}, N \in \mathcal{N} \}</math>
forms a [[Neighbourhood system|neighborhood basis]]<ref>Note that each set <math>\mathcal{U}(G, N)</math> is a neighborhood of the origin for this topology, but it is not necessarily an ''open'' neighborhood of the origin.</ref>
at the origin for a unique translation-invariant topology on <math>F,</math> where this topology is {{em|not}} necessarily a vector topology (that is, it might not make <math>F</math> into a TVS).
This topology does not depend on the neighborhood basis <math>\mathcal{N}</math> that was chosen and it is known as the '''topology of uniform convergence on the sets in <math>\mathcal{G}</math>''' or as the '''<math>\mathcal{G}</math>-topology'''.{{sfn|Schaefer|Wolff|1999|pp=79-88}}
However, this name is frequently changed according to the types of sets that make up <math>\mathcal{G}</math> (e.g. the "topology of uniform convergence on compact sets" or the "topology of compact convergence", see the footnote for more details<ref>In practice, <math>\mathcal{G}</math> usually consists of a collection of sets with certain properties and this name is changed appropriately to reflect this set so that if, for instance, <math>\mathcal{G}</math> is the collection of compact subsets of <math>T</math> (and <math>T</math> is a topological space), then this topology is called the topology of uniform convergence on the compact subsets of <math>T.</math></ref>).
 
A subset <math>\mathcal{G}_1</math> of <math>\mathcal{G}</math> is said to be '''fundamental with respect to <math>\mathcal{G}</math>''' if each <math>G \in \mathcal{G}</math> is a subset of some element in <math>\mathcal{G}_1.</math>
===Examples===
In this case, the collection <math>\mathcal{G}</math> can be replaced by <math>\mathcal{G}_1</math> without changing the topology on <math>F.</math>{{sfn|Schaefer|Wolff|1999|pp=79-88}}
One may also replace <math>\mathcal{G}</math> with the collection of all subsets of all finite unions of elements of <math>\mathcal{G}</math> without changing the resulting <math>\mathcal{G}</math>-topology on <math>F.</math>{{sfn|Narici|Beckenstein|2011|pp=19-45}}
 
Call a subset <math>B</math> of <math>T</math> '''<math>F</math>-bounded''' if <math>f(B)</math> is a bounded subset of <math>Y</math> for every <math>f \in F.</math>{{sfn|Jarchow|1981|pp=43-55}}
The table below lists the most common types of <math>\mathcal{G}</math> topologies
 
{{Math theorem|name=Theorem{{sfn|Schaefer|Wolff|1999|pp=79-88}}{{sfn|Jarchow|1981|pp=43-55}}|math_statement=
{| class="wikitable"
The <math>\mathcal{G}</math>-topology on <math>F</math> is compatible with the vector space structure of <math>F</math> if and only if every <math>G \in \mathcal{G}</math> is <math>F</math>-bounded;
|-
that is, if and only if for every <math>G \in \mathcal{G}</math> and every <math>f \in F,</math> <math>f(G)</math> is [[Bounded set (topological vector space)|bounded]] in <math>Y.</math>
! Name
}}
! Notation
! <math>\mathcal{G}</math>
|-
| width="350pt" | Topology of pointwise convergence
| <math>L_{\sigma}(X, Y)</math>
| <math>\mathcal{G} = \{G \sub X : G \text{ is finite}\}</math>
|-
| Topology of convex compact convergence, or the topology of uniform convergence on compact convex sets
| <math>L_{\gamma}(X, Y)</math>
| <math>\mathcal{G} = \{G \sub X : G \text{ is convex and compact}\}</math>
|-
| Topology of compact convergence, or the topology of uniform convergence on compact sets
| <math>L_{c}(X, Y)</math>
| <math>\mathcal{G} = \{G \sub X : G \text{ is compact}\}</math>
|-
| Topology of bounded convergence, or the topology of uniform convergence on bounded sets
| <math>L_{b}(X, Y)</math>
| <math>\mathcal{G} = \{G \sub X : G \text{ is bounded}\}</math>
|}
 
==='''Properties==='''
* If <math>Y</math> is locally convex then so is <math>L_{\mathcal{G}}(X, Y)</math>.
* If <math>Y</math> is Hausdorff and <math>\bigcup_{G \in \mathcal{G}} G</math> is dense in <math>X</math> then <math>L_{\mathcal{G}}(X, Y)</math> is Hausdorff.
* If <math>X</math> is a [[bornological space]] and if <math>Y</math> is a [[Complete_metric_space#Topologically_complete_spaces|complete]] locally convex Hausdorff space then <math>L_{b}(X, Y)</math> is complete.
* If <math>X</math> is a [[Frechet space]] or a [[LF-space]] and if <math>Y</math> is a [[Complete_metric_space#Topologically_complete_spaces|complete]] locally convex Hausdorff space then <math>L_{c}(X, Y)</math> is complete.
* If <math>X</math> and <math>Y</math> are both normed spaces then <math>L_{b}(X, Y)</math> is a normed space with the usual operator norm.
 
Properties of the basic open sets will now be described, so assume that <math>G \in \mathcal{G}</math> and <math>N \in \mathcal{N}.</math>
=G-topologies on the continuous dual induced by ''X''=
Then <math>\mathcal{U}(G, N)</math> is an [[Absorbing set|absorbing]] subset of <math>F</math> if and only if for all <math>f \in F,</math> <math>N</math> absorbs <math>f(G)</math>.{{sfn|Narici|Beckenstein|2011|pp=371-423}}
If <math>N</math> is [[Balanced set|balanced]]{{sfn|Narici|Beckenstein|2011|pp=371-423}} (respectively, [[Convex set|convex]]) then so is <math>\mathcal{U}(G, N).</math>
 
The equality
The [[Dual space#Continuous dual space|continuous dual space]] of a topological vector space <math>X</math> over the field <math>\mathcal{F}</math> (which we will assume to be [[real numbers|real]] or [[complex numbers]]) is the vector space <math>L(X, \mathcal{F})</math> and is denoted by <math>X^*</math> and sometimes by <math>X'</math>. Given <math>\mathcal{G}</math>, a set of subsets of <math>X</math>, we can apply all of the preceding to this space by using <math>Y = \mathcal{F}</math> and in this case <math>X^*</math> with this <math>\mathcal{G}</math>-topology is denoted by <math>X^*_{\mathcal{G}}</math>, so that in particular we have the following basic properties:
<math>\mathcal{U}(\varnothing, N) = F</math>
* A basis of neighborhoods of ''0'' for <math>X^*_{\mathcal{G}}</math> is formed by the [[Polar set]]s <math>G^\circ := \{x' \in X^* : \sup_{x \in G} |\langle x', x \rangle | \le 1\}</math> as <math>G</math> varies over <math>\mathcal{G}</math>.
always holds.
** A [[Filter (mathematics)|filter]] <math>F'</math> on <math>X^*</math> converges to an element <math>x' \in X^*</math> in the <math>\mathcal{G}</math>-topology on <math>X^*</math> if <math>F'</math> uniformly to <math>x'</math> on each <math>G \in \mathcal{G}</math>.
** If <math>G \sub Xs</math> is boundeda scalar then <math>s \mathcal{U}(G^, N) = \circmathcal{U}(G, s N),</math> isso absorbing,that soin particular, <math>- \mathcal{GU}</math>(G, usuallyN) consists= of\mathcal{U}(G, bounded subsets of- <math>XN).</math>.{{sfn|Narici|Beckenstein|2011|pp=371-423}}
Moreover,{{sfn|Narici|Beckenstein|2011|pp=19-45}}
* <math>X^*</math> is locally convex,
* If <math display=block>\bigcup_mathcal{U}(G, \inN) - \mathcal{GU}} (G</math>, isN) dense\subseteq in <math>X</math> then <math>X^*_{\mathcal{U}(G}}, N - N)</math> is Hausdorff.
and similarly{{sfn|Jarchow|1981|pp=43-55}}
* If <math>\bigcup_{G \in \mathcal{G}} G</math> covers <math>X</math> then for all <math>x \in X</math> the evaluation functional on <math>X^*</math> (i.e. <math>x' \in X^* \mapsto \langle x', x \rangle</math>) is continuous on <math>X^*_{\mathcal{G}}</math>, so that the canonical map from <math>X</math> into <math>(X^*_{\mathcal{G}})^*</math> is well-defined.
<math display=block>\mathcal{U}(G, M) + \mathcal{U}(G, N) \subseteq \mathcal{U}(G, M + N).</math>
** If in addition <math>X^*</math> separates points on <math>X</math> then the canonical map of <math>X</math> into <math>(X^*_{\mathcal{G}})^*</math> is an injection.
* Suppose that <math>X</math> and <math>Y</math> are two topological vector spaces and <math>u : E \to F</math> is a continuous linear map. If <math>\mathcal{G}</math> and <math>\mathcal{H}</math> are collections of subsets of <math>X</math> and <math>Y</math>, respectively, that form <math>\mathcal{G}</math>-topologies and <math>\mathcal{H}</math>-topologies on <math>X^*</math> and <math>Y^*</math> then <math>u</math>'s [[transpose]], <math>{}^tu : Y^*_{\mathcal{H}} \to X^*_{\mathcal{G}}</math> is continuous if for every <math>G \in \mathcal{G}</math> there is a <math>H \in \mathcal{H}</math> such that <math>u(G) \subseteq H</math>.<ref>Treves pp. 199 - 200</ref>
** In particular, the transpose of <math>u</math> is continuous if <math>X^*</math> caries the <math>\sigma(X^*, X)</math> (respectively, <math>\gamma(X^*, X)</math>, <math>c(X^*, X)</math>, <math>b(X^*, X)</math>) topology and <math>Y^*</math> carry any topology stronger than the <math>\sigma(Y^*, Y)</math> topology (respectively, <math>\gamma(Y^*, Y)</math>, <math>c(Y^*, Y)</math>, <math>b(Y^*, Y)</math>).
* If <math>X</math> is a [[bornological space]] (ex: [[metrizable]] or [[LF-space]]) then <math>X^*</math>is complete.
* If <math>X</math> is a [[Frechet space]] or a [[LF-space]] then <math>L_{c}(X, Y)</math> is complete.
 
For any subsets <math>G, H \subseteq X</math> and any non-empty subsets <math>M, N \subseteq Y,</math>{{sfn|Jarchow|1981|pp=43-55}}
==The Weak topology <math>\sigma(X^*, X)</math> or the Weak* topology==
<math display=block>\mathcal{U}(G \cup H, M \cap N) \subseteq \mathcal{U}(G, M) \cap \mathcal{U}(H, N)</math>
which implies:
<ul>
<li>if <math>M \subseteq N</math> then <math>\mathcal{U}(G, M) \subseteq \mathcal{U}(G, N).</math>{{sfn|Narici|Beckenstein|2011|pp=371-423}}</li>
<li>if <math>G \subseteq H</math> then <math>\mathcal{U}(H, N) \subseteq \mathcal{U}(G, N).</math></li>
<li>For any <math>M, N \in \mathcal{N}</math> and subsets <math>G, H, K</math> of <math>T,</math> if <math>G \cup H \subseteq K</math> then <math>\mathcal{U}(K, M \cap N) \subseteq \mathcal{U}(G, M) \cap \mathcal{U}(H, N).</math></li>
</ul>
 
ByFor lettingany family <math>\mathcal{GS}</math> be the set of all finite subsets of <math>XT</math>, and any family <math>X^*\mathcal{M}</math> willof haveneighborhoods of the '''weakorigin topology onin <math>X^*Y,</math>'''{{sfn|Narici|Beckenstein|2011|pp=19-45}} more comonly<math asdisplay="block">\mathcal{U}\left(\bigcup_{S the '''weak*\in topology''' or ''the topology of\mathcal{S}} pointwise convergence'''S, whichN\right) is= denoted\bigcap_{S by\in <math>\sigmamathcal{S}} \mathcal{U}(X^*S, XN)</math> and\qquad <math>X^*</math>\text{ withand this} topology\qquad is\mathcal{U}\left(G, denoted\bigcap_{M by\in <math>X^*_\mathcal{\sigmaM}}</math> orM\right) by= <math>X^*_\bigcap_{M \sigmain \mathcal{M}} \mathcal{U}(X^*G, XM)}.</math> if there may be ambiguity.
 
===Uniform structure===
The <math>\sigma(X^*, X)</math> topology has the following properties:
{{See also|Uniform space}}
* <math>X^*</math> with the <math>\sigma(X^*, X)</math> is normable if and only if <math>X</math> is finite dimensional.
* When <math>X</math> is infinite dimensional the <math>\sigma(X^*, X)</math> topology on <math>X^*</math> is strictly less fine than the strong dual topology <math>b(X^*, X)</math>.
 
For any <math>G \subseteq T</math> and <math>U \subseteq Y \times Y</math> be any [[Uniform space|entourage]] of <math>Y</math> (where <math>Y</math> is endowed with its [[Complete topological vector space#Canonical uniformity|canonical uniformity]]), let
==Compact-Convex Convergence <math>\gamma(X^*, X)</math>==
<math display=block>\mathcal{W}(G, U) ~:=~ \left\{(u, v) \in Y^T \times Y^T ~:~ (u(g), v(g)) \in U \; \text{ for every } g \in G\right\}.</math>
Given <math>G \subseteq T,</math> the family of all sets <math>\mathcal{W}(G, U)</math> as <math>U</math> ranges over any fundamental system of entourages of <math>Y</math> forms a fundamental system of entourages for a uniform structure on <math>Y^T</math> called {{em|the uniformity of uniform converges on <math>G</math>}} or simply {{em|the <math>G</math>-convergence uniform structure}}.{{sfn|Grothendieck|1973|pp=1-13}}
The {{em|<math>\mathcal{G}</math>-convergence uniform structure}} is the least upper bound of all <math>G</math>-convergence uniform structures as <math>G \in \mathcal{G}</math> ranges over <math>\mathcal{G}.</math>{{sfn|Grothendieck|1973|pp=1-13}}
 
'''Nets and uniform convergence'''
By letting <math>\mathcal{G}</math> be the set of all compact convex subsets of <math>X</math>, <math>X^*</math> will have the ''the topology of compact convex convergence''' or '''the topology of uniform convergence on compact convex sets''', which is denoted by <math>\gamma(X^*, X)</math> and <math>X^*</math> with this topology is denoted by <math>X^*_{\gamma}</math> or by <math>X^*_{\gamma(X^*, X)}</math>.
 
Let <math>f \in F</math> and let <math>f_{\bull} = \left(f_i\right)_{i \in I}</math> be a [[Net (mathematics)|net]] in <math>F.</math> Then for any subset <math>G</math> of <math>T,</math> say that <math>f_{\bull}</math> '''converges uniformly to <math>f</math> on <math>G</math>''' if for every <math>N \in \mathcal{N}</math> there exists some <math>i_0 \in I</math> such that for every <math>i \in I</math> satisfying <math>i \geq i_0,I</math> <math>f_i - f \in \mathcal{U}(G, N)</math> (or equivalently, <math>f_i(g) - f(g) \in N</math> for every <math>g \in G</math>).{{sfn|Jarchow|1981|pp=43-55}}
==Compact Convergence <math>c(X^*, X)</math>==
 
{{Math theorem|name=Theorem{{sfn|Jarchow|1981|pp=43-55}}|math_statement=
By letting <math>\mathcal{G}</math> be the set of all compact subsets of <math>X</math>, <math>X^*</math> will have the ''the topology of compact convergence''' or '''the topology of uniform convergence on compact sets''', which is denoted by <math>c(X^*, X)</math> and <math>X^*</math> with this topology is denoted by <math>X^*_{c}</math> or by <math>X^*_{c(X^*, X)}</math>.
If <math>f \in F</math> and if <math>f_{\bull} = \left(f_i\right)_{i \in I}</math> is a net in <math>F,</math> then <math>f_{\bull} \to f</math> in the <math>\mathcal{G}</math>-topology on <math>F</math> if and only if for every <math>G \in \mathcal{G},</math> <math>f_{\bull}</math> converges uniformly to <math>f</math> on <math>G.</math>
}}
 
===Inherited properties===
 
'''Local convexity'''
==Mackey topology <math>\tau(X^*, X)</math>==
 
By lettingIf <math>\mathcal{G}Y</math> be the set ofis all[[locally convex]] balancedthen weaklyso compactis subsets ofthe <math>X\mathcal{G}</math>,-topology on <math>X^*F</math> willand have the ''Mackey topology onif <math>X^*\left(p_i\right)_{i \in I}</math>''' oris '''thea topologyfamily of uniformcontinuous convergenceseminorms ongenerating convexthis balancedtopology weakly compact sets''', which is denoted byon <math>\tau(X^*, X)Y</math> andthen the <math>X^*\mathcal{G}</math> with this -topology is denotedinduced by <math>X^*_{\tau(X^*,the following family of seminorms: X)}</math>.
<math display="block">p_{G,i}(f) := \sup_{x \in G} p_i(f(x)),</math>
as <math>G</math> varies over <math>\mathcal{G}</math> and <math>i</math> varies over <math>I</math>.{{sfn|Schaefer|Wolff|1999|p=81}}
 
'''Hausdorffness'''
==Strong dual topology <math>b(X^*, X)</math>==
 
If <math>Y</math> is [[Hausdorff space|Hausdorff]] and <math>T = \bigcup_{G \in \mathcal{G}} G</math> then the <math>\mathcal{G}</math>-topology on <math>F</math> is Hausdorff.{{sfn|Jarchow|1981|pp=43-55}}
By letting <math>\mathcal{G}</math> be the set of all bounded subsets of <math>X</math>, <math>X^*</math> will have the ''the topology of bounded convergence on <math>X</math>''' or '''the topology of uniform convergence on bounded sets''' or the '''strong dual topology on <math>X^*</math>''', which is denoted by <math>b(X^*, X)</math> and <math>X^*</math> with this topology is denoted by <math>X^*_{b}</math> or by <math>X^*_{b(X^*, X)}</math>. Due to its importance, the continuous dual space of <math>X^*_{b}</math>, which is commonly denoted by <math>X^{**}</math> so that <math>(X^*_{b})^* = X^{**}</math>.
 
TheSuppose that <math>b(X^*, X)T</math> topologyis hasa thetopological followingspace. properties:
* If <math>XY</math> is locally[[Hausdorff convex,space|Hausdorff]] thenand this topology<math>F</math> is finerthe thanvector subspace of <math>Y^T</math> consisting of all othercontinuous maps that are bounded on every <math>G \in \mathcal{G}</math>-topologies onand if <math>X^*\bigcup_{G \in \mathcal{G}} G</math> whenis consideringdense in <math>T</math> then onlythe <math>\mathcal{G}</math>'s-topology whose sets are subsets ofon <math>XF</math> is Hausdorff.
* If <math>X</math> is a normed space then the stong dual topology on <math>X^*</math> may be defined by the norm <math>||x'|| = \sup_{x \in X,, ||x|| = 1} | \langle x', x \rangle |</math>, where <math>x' \in X^*</math>.<ref>Treves, p. 198</ref>
* Given a topological vector space <math>X</math>, the following properties are equivalent:<ref>Treves, p. 201</ref>
{{ordered list|type=lower-roman|style=margin-left: 1em
| <math>X^*_{b(X^*, X)}</math> is metrizable,
| <math>X^*_{b(X^*, X)}</math> is normable,
| <math>X</math> is normable.
}}
 
'''Boundedness'''
<math>X^*_{b(X^*, X)}</math> is
 
A subset <math>H</math> of <math>F</math> is [[Bounded set (topological vector space)|bounded]] in the <math>\mathcal{G}</math>-topology if and only if for every <math>G \in \mathcal{G},</math> <math>H(G) = \bigcup_{h \in H} h(G)</math> is bounded in <math>Y.</math>{{sfn|Schaefer|Wolff|1999|p=81}}
==Mackey topology <math>\tau(X^*, X^{**})</math>==
 
===Examples of 𝒢-topologies===
By letting <math>\mathcal{G''}</math> be the set of all convex balanced weakly compact subsets of <math>X^{**} = (X^*_{b})^*</math>, <math>X^*</math> will have the ''Mackey topology on <math>X^*</math> induced by <math>X^{**}</math>''' or '''the topology of uniform convergence on convex balanced weakly compact subsets of <math>X^{**}</math>''', which is denoted by <math>\tau(X^*, X^{**})</math> and <math>X^*</math> with this topology is denoted by <math>X^*_{\tau(X^*, X^{**})}</math>.
* This topology is finer than <math>b(X^*, X)</math> and hence finer than <math>\tau(X^*, X)</math>.
 
'''Pointwise convergence'''
==Other examples==
 
OtherIf we let <math>\mathcal{G}</math> be the set of all finite subsets of <math>T</math> then the <math>\mathcal{G}</math>-topologiestopology on <math>X^*F</math> includeis called the '''topology of pointwise convergence'''.
The topology of pointwise convergence on <math>F</math> is identical to the subspace topology that <math>F</math> inherits from <math>Y^T</math> when <math>Y^T</math> is endowed with the usual [[product topology]].
* The topology of uniform convergence on convex balanced complete bounded subsets of ''X''.
* The topology of uniform convergence on convex balanced infracomplete bounded subsets of ''X''.
 
If <math>X</math> is a non-trivial [[Completely regular space|completely regular]] Hausdorff topological space and <math>C(X)</math> is the space of all real (or complex) valued continuous functions on <math>X,</math> the topology of pointwise convergence on <math>C(X)</math> is [[Metrizable TVS|metrizable]] if and only if <math>X</math> is countable.{{sfn|Jarchow|1981|pp=43-55}}
=G-topologies on ''X'' induced by the continuous dual=
 
==𝒢-topologies on spaces of continuous linear maps==
There is a canonical map from <math>X</math> into <math>(X^*_{\sigma})^*</math> which maps an element <math>x \in X</math> to the following map: <math>x' \in X^* \mapsto \langle x', x \rangle</math>. By using this canonical map we can identify <math>X</math> as being contained in the continuous dual of <math>X^*_{\sigma}</math> (that is, contined in <math>(X^*_{\sigma})^*</math>). In fact, this canonical map is ''onto'', which means that <math>X = (X^*_{\sigma})^*</math> so that we can through this canonical isomorphism think of <math>X</math> as the continuous dual space of <math>X^*_{\sigma}</math>. Note that it is a common convention that if an equal sign appears between two sets which are clearly not equal, then the equality really means that the sets are isomorphic through some canonical map.
 
Throughout this section we will assume that <math>X</math> and <math>Y</math> are [[topological vector space]]s.
Since we are now regarding <math>X</math> as the continuous dual space of <math>X^*_{\sigma}</math>, we can look at sets of subsets of <math>X^*_{\sigma}</math>, say <math>\mathcal{G'}</math> and construct a dual space topology on the dual of <math>X^*_{\sigma}</math>, which is <math>X</math>. * A basis of neighborhoods of ''0'' for <math>X_{\mathcal{G'}}</math> is formed by the [[Polar set]]s <math>G'^\circ := \{x \in X : \sup_{x' \in G'} |\langle x', x \rangle | \le 1\}</math> as <math>G'</math> varies over <math>\mathcal{G'}</math>.
<math>\mathcal{G}</math> will be a non-empty collection of subsets of <math>X</math> [[Directed set|directed]] by inclusion.
<math>L(X; Y)</math> will denote the vector space of all continuous linear maps from <math>X</math> into <math>Y.</math> If <math>L(X; Y)</math> is given the <math>\mathcal{G}</math>-topology inherited from <math>Y^X</math> then this space with this topology is denoted by <math>L_{\mathcal{G}}(X; Y)</math>.
The [[Dual space#Continuous dual space|continuous dual space]] of a topological vector space <math>X</math> over the field <math>\mathbb{F}</math> (which we will assume to be [[real numbers|real]] or [[complex numbers]]) is the vector space <math>L(X; \mathbb{F})</math> and is denoted by <math>X^{\prime}</math>.
 
The <math>\mathcal{G}</math>-topology on <math>L(X; Y)</math> is compatible with the vector space structure of <math>L(X; Y)</math> if and only if for all <math>G \in \mathcal{G}</math> and all <math>f \in L(X; Y)</math> the set <math>f(G)</math> is bounded in <math>Y,</math> which we will assume to be the case for the rest of the article.
==The Weak topology <math>\sigma(X, X^*)</math>==
Note in particular that this is the case if <math>\mathcal{G}</math> consists of [[Bounded set (topological vector space)|(von-Neumann) bounded]] subsets of <math>X.</math>
 
===Assumptions on 𝒢===
By letting <math>\mathcal{G'}</math> be the set of all finite subsets of <math>X'</math>, <math>X</math> will have the '''weak topology'' or ''the topology of pointwise convergence on <math>X^*</math>''', which is denoted by <math>\sigma(X, X^*)</math> and <math>X</math> with this topology is denoted by <math>X_{\sigma}</math> or by <math>X_{\sigma(X, X^*)}</math> if there may be ambiguity.
 
'''Assumptions that guarantee a vector topology'''
==Convergence on Equicontinuous sets <math>\epsilon(X, X^*)</math>==
 
By letting* (<math>\mathcal{G'}</math> beis the set of all equicontinuous subsetsdirected): <math>X^*</math>, <math>X\mathcal{G}</math> will havebe thea '''thenon-empty topologycollection of uniform convergence on equicontinuous subsets of <math>X^*</math>''', which[[Directed is denotedset|directed]] by <math>\epsilon(Xsubset) inclusion. That is, X^*)for any </math>G, andH <math>X\in \mathcal{G},</math> withthere this topology is denoted byexists <math>X_K \in \mathcal{\epsilonG}</math> orsuch bythat <math>X_{G \epsilon(X,cup H X^*)}\subseteq K</math>.
* If <math>\mathcal{G'}</math> was the set of all convex balanced weakly compact equicontinuous subsets of <math>X^*</math>, then the same topology would have been induced.
* If <math>X</math> is locally convex and Hausdorff then <math>X</math>'s given topology (i.e. the topology that <math>X</math> started with) is exactly <math>\epsilon(X, X^*)</math>.
 
The above assumption guarantees that the collection of sets <math>\mathcal{U}(G, N)</math> forms a [[filter base]].
==Mackey topology <math>\tau(X, X^*)</math>==
The next assumption will guarantee that the sets <math>\mathcal{U}(G, N)</math> are [[Balanced set|balanced]].
Every TVS has a neighborhood basis at 0 consisting of balanced sets so this assumption isn't burdensome.
 
* (<math>N \in \mathcal{N}</math> are balanced): <math>\mathcal{N}</math> is a neighborhoods basis of the origin in <math>Y</math> that consists entirely of [[Balanced set|balanced]] sets.
By letting <math>\mathcal{G'}</math> be the set of all convex balanced weakly compact subsets of <math>X^*</math>, <math>X</math> will have the '''Mackey topology on <math>X</math>''' or '''the topology of uniform convergence on convex balanced weakly compact subsets of <math>X^*</math>''', which is denoted by <math>\tau(X, X^*)</math> and <math>X</math> with this topology is denoted by <math>X_{\tau}</math> or by <math>X_{\tau(X, X^*)}</math>.
 
The following assumption is very commonly made because it will guarantee that each set <math>\mathcal{U}(G, N)</math> is absorbing in <math>L(X; Y).</math>
==Bounded Convergence <math>b(X, X^*)</math>==
 
By letting* (<math>G \in \mathcal{G}</math> be the set of allare bounded subsets of): <math>X\mathcal{G}</math>, <math>X^*</math> willis haveassumed theto ''theconsist topologyentirely of bounded convergence''' or '''the topologysubsets of uniform convergence on bounded sets''', which is denoted by <math>b(X^*, X).</math> and <math>X^*</math> with this topology is denoted by <math>X^*_{b}</math> or by <math>X^*_{b(X, X^*)}</math>.
 
The next theorem gives ways in which <math>\mathcal{G}</math> can be modified without changing the resulting <math>\mathcal{G}</math>-topology on <math>Y.</math>
 
{{Math theorem|name=Theorem{{sfn|Narici|Beckenstein|2011|pp=371-423}}|math_statement=
==The Mackey-Arens Theorem==
Let <math>\mathcal{G}</math> be a non-empty collection of bounded subsets of <math>X.</math> Then the <math>\mathcal{G}</math>-topology on <math>L(X; Y)</math> is not altered if <math>\mathcal{G}</math> is replaced by any of the following collections of (also bounded) subsets of <math>X</math>:
Let <math>X</math> be a vector space and let <math>Y</math> be a vector subspace of the algebraic dual of <math>X</math> that [[Separating set|separates points]] on <math>X</math>. Any locally convex Hausdorff topological vector space (TVS) topology on <math>X</math> with the property that when <math>X</math> is equipped with this topology has <math>Y</math> as its the continuous dual space is said to be '''compatible with duality between <math>X</math> and <math>Y</math>'''. If we give <math>X</math> the weak topology <math>\sigma(X, Y)</math> then <math>X_{\sigma(X, Y)}</math> is a Hausdorff locally convex topological vector space (TVS) and <math>\sigma(X, Y)</math> is compatible with duality between <math>X</math> and <math>Y</math> (i.e. <math>X_{\sigma(X, Y)}^* = (X_{\sigma(X, Y)})^* = Y</math>). We can now ask the question: what are ''all'' of the locally convex Hausdorff TVS topologies that we can place on <math>X</math> that are compatible with duality between <math>X</math> and <math>Y</math>? The answer to this question is called the [[Mackey-Arens_theorem#Mackey.E2.80.93Arens_theorem|Mackey-Arens Theorem]]:<ref>Treves, pp. 196, 368 - 370</ref>
<ol>
<li>all subsets of all finite unions of sets in <math>\mathcal{G}</math>;</li>
<li>all scalar multiples of all sets in <math>\mathcal{G}</math>;</li>
<li>all finite [[Minkowski sum]]s of sets in <math>\mathcal{G}</math>;</li>
<li>the [[Balanced set|balanced hull]] of every set in <math>\mathcal{G}</math>;</li>
<li>the closure of every set in <math>\mathcal{G}</math>;</li>
</ol>
 
and if <math>X</math> and <math>Y</math> are locally convex, then we may add to this list:
<blockquote style="color:#111111; background:#FFFFFF; padding:1em; border:1px solid #999999">
<ol start=6>
'''Theorem.''' Let <math>X</math> be a vector space and let <math>\mathcal{T}</math> be a locally convex Hausdorff topological vector space topology on <math>X</math>. Let <math>X^*</math> denote the continuous dual space of <math>X</math> and let <math>X_{\mathcal{T}}</math> denote <math>X</math> with the topology <math>\mathcal{T}</math>. Then the following are equivalent:
<li>the closed [[Absolutely convex|convex balanced hull]] of every set in <math>\mathcal{G}.</math></li>
{{ordered list|
</ol>
| <math>\mathcal{T}</math> is identical to a <math>\mathcal{G'}</math>-topology on <math>X</math>, where <math>\mathcal{G'}</math> is a covering of <math>X^*</math> consisting of convex, balanced, <math>\sigma(X^*, X)</math>-compact sets with the properties that
{{ordered list|type=lower-roman|style=margin-left: 1em
| If <math>G_1', G_2' \in \mathcal{G'}</math> then there exists a <math>G' \in \mathcal{G'}</math> such that <math>G_1' \cup G_2' \subseteq G'</math>, and
| If <math>G_1' \in \mathcal{G'}</math> and <math>\lambda</math> is a scalar then there exists a <math>G' \in \mathcal{G'}</math> such that <math>\lambda G_1' \subseteq G'</math>.
}}
| The continuous dual of <math>X_{\mathcal{T}}</math> is identical to <math>X^*</math>.
}}
And furthermore,
{{ordered list
| the topology <math>\mathcal{T}</math> is identical to the <math>\epsilon(X, X^*)</math> topology, that is, to the topology of uniform on convergence on the equicontinuous subsets of <math>X^*</math>.
| the Mackey topology <math>\tau(X, X^*)</math> is the finest locally convex Hausdorff TVS topology on <math>X</math> that is compatible with duality between <math>X</math> and <math>X_{\mathcal{T}}^*</math>, and
| the weak topology <math>\sigma(X, X^*)</math> is the weakest locally convex Hausdorff TVS topology on <math>X</math> that is compatible with duality between <math>X</math> and <math>X_{\mathcal{T}}^*</math>.
}}
 
'''Common assumptions'''
 
Some authors (e.g. Narici) require that <math>\mathcal{G}</math> satisfy the following condition, which implies, in particular, that <math>\mathcal{G}</math> is [[Directed set|directed]] by subset inclusion:
</blockquote>
:<math>\mathcal{G}</math> is assumed to be closed with respect to the formation of subsets of finite unions of sets in <math>\mathcal{G}</math> (i.e. every subset of every finite union of sets in <math>\mathcal{G}</math> belongs to <math>\mathcal{G}</math>).
 
Some authors (e.g. Trèves {{sfn|Trèves|2006|loc=Chapter 32}}) require that <math>\mathcal{G}</math> be directed under subset inclusion and that it satisfy the following condition:
=G-H-topologies on Spaces of Bilinear maps=
:If <math>G \in \mathcal{G}</math> and <math>s</math> is a scalar then there exists a <math>H \in \mathcal{G}</math> such that <math>s G \subseteq H.</math>
If <math>\mathcal{G}</math> is a [[bornology]] on <math>X,</math> which is often the case, then these axioms are satisfied.
If <math>\mathcal{G}</math> is a [[saturated family]] of [[Bounded set (topological vector space)|bounded]] subsets of <math>X</math> then these axioms are also satisfied.
 
===Properties===
We will let <math>\mathcal{B}(X, Y; Z)</math> denote the space of separately continuous bilinear maps and <math>B(X, Y; Z)</math> denote its subspace the space of continuous bilinear maps, where <math>X, Y</math> and <math>Z</math> are topological vector space over the same field (either the real or complex numbers). In an analogous way to how we placed a topology on <math>L(X, Y)</math> we can place a topology on <math>\mathcal{B}(X, Y; Z)</math> and <math>B(X, Y; Z)</math>.
 
'''Hausdorffness'''
Let <math>\mathcal{G}</math> be a set of subsets of <math>X</math>, <math>\mathcal{H}</math> be a set of subsets of <math>Y</math> and let <math>\mathcal{N}</math> be a basis of neighborhoods of 0 in <math>Z</math>. Then we can define a topology on <math>\mathcal{B}(X, Y; Z)</math> by defining the neighborhoods of 0 in <math>\mathcal{B}(X, Y; Z)</math> to be
:<math>\mathcal{U}(G, H, V) = \{b \in \mathcal{B}(X, Y; Z) : f(G, H) \sub N\}</math>
as ''G'', ''H'', and ''N'' range over all <math>G \in \mathcal{G}</math>, <math>H \in \mathcal{H}</math> and <math>N \in \mathcal{N}</math>. This topology is known as the '''<math>\mathcal{G}-\mathcal{H}</math>-topology on <math>\mathcal{B}(X, Y; Z)</math>''' or as the '''topology of uniform convergence on the products <math>G \times H</math> of <math>\mathcal{G} \times \mathcal{H}</math>'''. We can now give <math>B(X, Y; Z)</math> the subspace topology inherited from <math>\mathcal{B}(X, Y; Z)</math>. However, as before, this topology is not necessarily compatible with the vector space structure of <math>\mathcal{B}(X, Y; Z)</math> or of <math>B(X, Y; Z)</math> without additional requirements.
 
A subset of a TVS <math>X</math> whose [[linear span]] is a [[dense set|dense subset]] of <math>X</math> is said to be a [[Total set|total subset]] of <math>X.</math>
If <math>\mathcal{G}</math> is a family of subsets of a TVS <math>T</math> then <math>\mathcal{G}</math> is said to be '''[[Total set|total in <math>T</math>]]''' if the [[linear span]] of <math>\bigcup_{G \in \mathcal{G}} G</math> is dense in <math>T.</math>{{sfn|Schaefer|Wolff|1999|p=80}}
 
If <math>F</math> is the vector subspace of <math>Y^T</math> consisting of all continuous linear maps that are bounded on every <math>G \in \mathcal{G},</math> then the <math>\mathcal{G}</math>-topology on <math>F</math> is Hausdorff if <math>Y</math> is Hausdorff and <math>\mathcal{G}</math> is total in <math>T.</math>{{sfn|Narici|Beckenstein|2011|pp=371-423}}
 
'''Completeness'''
= See also=
* [[Bornological space]]
* [[Bounded linear operator]]
* [[Operator norm]]
 
For the following theorems, suppose that <math>X</math> is a topological vector space and <math>Y</math> is a [[locally convex]] Hausdorff spaces and <math>\mathcal{G}</math> is a collection of bounded subsets of <math>X</math> that covers <math>X,</math> is directed by subset inclusion, and satisfies the following condition: if <math>G \in \mathcal{G}</math> and <math>s</math> is a scalar then there exists a <math>H \in \mathcal{G}</math> such that <math>s G \subseteq H.</math>
= References =
 
* {{cite book | last = Hogbe-Nlend | first = Henri | title = Bornologies and functional analysis | publisher = North-Holland Publishing Co. | ___location = Amsterdam | year = 1977 | pages = xii+144 | isbn = 0-7204-0712-5 | mr = 0500064}}
<ul>
* {{cite book | author=H.H. Schaefer | title=Topological Vector Spaces | publisher=[[Springer-Verlag]] | series=[[Graduate Texts in Mathematics|GTM]] | volume=3 | year=1970 | isbn=0-387-05380-8 | pages=61–63 }}
<li><math>L_{\mathcal{G}}(X; Y)</math> is [[Complete topological vector space|complete]] if
* {{cite book | last = Tr\`{e}ves | first = Fran\c{c}ois | title=Topological Vector Spaces, Distributions and Kernels | publisher=[[Academic Press, Inc.]] | year=1995 | isbn=0-486-45352-9 | pages=136-149, 195-201, 240-252, 335-390, 420-433 }}
{{ordered list|
* {{cite book | author=S.M. Khaleelulla | title=Counterexamples in Topological Vector Spaces | publisher=[[Springer-Verlag]] | series=[[Graduate Texts in Mathematics|GTM]] | volume=936 | date=1982 | isbn=978-3-540-11565-6 | pages=29-33, 49, 104}}
|<math>X</math> is locally convex and Hausdorff,
|<math>Y</math> is complete, and
|whenever <math>u : X \to Y</math> is a linear map then <math>u</math> restricted to every set <math>G \in \mathcal{G}</math> is continuous implies that <math>u</math> is continuous,
}}</li>
<li>If <math>X</math> is a Mackey space then <math>L_{\mathcal{G}}(X; Y)</math> is complete if and only if both <math>X^{\prime}_{\mathcal{G}}</math> and <math>Y</math> are complete.</li>
<li>If <math>X</math> is [[Barrelled space|barrelled]] then <math>L_{\mathcal{G}}(X; Y)</math> is Hausdorff and [[quasi-complete]].</li>
<li>Let <math>X</math> and <math>Y</math> be TVSs with <math>Y</math> [[quasi-complete]] and assume that (1) <math>X</math> is [[Barreled space|barreled]], or else (2) <math>X</math> is a [[Baire space]] and <math>X</math> and <math>Y</math> are locally convex. If <math>\mathcal{G}</math> covers <math>X</math> then every closed [[Equicontinuous linear maps|equicontinuous subset]] of <math>L(X; Y)</math> is complete in <math>L_{\mathcal{G}}(X; Y)</math> and <math>L_{\mathcal{G}}(X; Y)</math> is quasi-complete.{{sfn|Schaefer|Wolff|1999|p=83}}</li>
<li>Let <math>X</math> be a [[bornological space]], <math>Y</math> a locally convex space, and <math>\mathcal{G}</math> a family of bounded subsets of <math>X</math> such that the range of every null sequence in <math>X</math> is contained in some <math>G \in \mathcal{G}.</math> If <math>Y</math> is [[quasi-complete]] (respectively, [[Complete topological vector space|complete]]) then so is <math>L_{\mathcal{G}}(X; Y)</math>.{{sfn|Schaefer|Wolff|1999|p=117}}</li>
</ul>
 
'''Boundedness'''
 
Let <math>X</math> and <math>Y</math> be topological vector spaces and <math>H</math> be a subset of <math>L(X; Y).</math>
Then the following are equivalent:{{sfn|Schaefer|Wolff|1999|p=81}}
<ol>
<li><math>H</math> is [[Bounded set (topological vector space)|bounded]] in <math>L_{\mathcal{G}}(X; Y)</math>;</li>
<li>For every <math>G \in \mathcal{G},</math> <math>H(G) := \bigcup_{h \in H} h(G)</math> is bounded in <math>Y</math>;{{sfn|Schaefer|Wolff|1999|p=81}}</li>
<li>For every neighborhood <math>V</math> of the origin in <math>Y</math> the set <math>\bigcap_{h \in H} h^{-1}(V)</math> [[Absorbing set|absorbs]] every <math>G \in \mathcal{G}.</math></li>
</ol>
 
If <math>\mathcal{G}</math> is a collection of bounded subsets of <math>X</math> whose union is [[Total set|total]] in <math>X</math> then every [[Equicontinuous linear maps|equicontinuous subset]] of <math>L(X; Y)</math> is bounded in the <math>\mathcal{G}</math>-topology.{{sfn|Schaefer|Wolff|1999|p=83}}
Furthermore, if <math>X</math> and <math>Y</math> are locally convex Hausdorff spaces then
<ul>
<li>if <math>H</math> is bounded in <math>L_{\sigma}(X; Y)</math> (that is, pointwise bounded or simply bounded) then it is bounded in the topology of uniform convergence on the convex, balanced, bounded, complete subsets of <math>X.</math>{{sfn|Schaefer|Wolff|1999|p=82}}</li>
<li> if <math>X</math> is [[Quasi-complete space|quasi-complete]] (meaning that closed and bounded subsets are complete), then the bounded subsets of <math>L(X; Y)</math> are identical for all <math>\mathcal{G}</math>-topologies where <math>\mathcal{G}</math> is any family of bounded subsets of <math>X</math> covering <math>X.</math>{{sfn|Schaefer|Wolff|1999|p=82}}</li>
<li></li>
</ul>
 
===Examples===
 
{| class="wikitable"
|-
! <math>\mathcal{G} \subseteq \wp(X)</math> ("topology of uniform convergence on ...")
! Notation
! Name ("topology of...")
! Alternative name
|-
| finite subsets of <math>X</math>
| <math>L_{\sigma}(X; Y)</math>
| pointwise/simple convergence
| topology of simple convergence
|-
| precompact subsets of <math>X</math>
|
| precompact convergence
|
|-
| compact convex subsets of <math>X</math>
| <math>L_{\gamma}(X; Y)</math>
| compact convex convergence
|
|-
| compact subsets of <math>X</math>
| <math>L_c(X; Y)</math>
| compact convergence
|
|-
| bounded subsets of <math>X</math>
| <math>L_b(X; Y)</math>
| bounded convergence
| strong topology
|}
 
====The topology of pointwise convergence====
 
By letting <math>\mathcal{G}</math> be the set of all finite subsets of <math>X,</math> <math>L(X; Y)</math> will have the '''weak topology on <math>L(X; Y)</math>''' or '''the topology of pointwise convergence''' or '''the topology of simple convergence''' and <math>L(X; Y)</math> with this topology is denoted by <math>L_{\sigma}(X; Y)</math>.
Unfortunately, this topology is also sometimes called '''the strong operator topology''', which may lead to ambiguity;{{sfn|Narici|Beckenstein|2011|pp=371-423}} for this reason, this article will avoid referring to this topology by this name.
 
A subset of <math>L(X; Y)</math> is called '''simply bounded''' or '''weakly bounded''' if it is bounded in <math>L_{\sigma}(X; Y)</math>.
 
The weak-topology on <math>L(X; Y)</math> has the following properties:
<ul>
<li>If <math>X</math> is [[Separable space|separable]] (that is, it has a countable dense subset) and if <math>Y</math> is a metrizable topological vector space then every [[Equicontinuous linear maps|equicontinuous subset]] <math>H</math> of <math>L_{\sigma}(X; Y)</math> is metrizable; if in addition <math>Y</math> is separable then so is <math>H.</math>{{sfn|Schaefer|Wolff|1999|p=87}}
* So in particular, on every equicontinuous subset of <math>L(X; Y),</math> the topology of pointwise convergence is metrizable.</li>
<li>Let <math>Y^X</math> denote the space of all functions from <math>X</math> into <math>Y.</math> If <math>L(X; Y)</math> is given the topology of pointwise convergence then space of all linear maps (continuous or not) <math>X</math> into <math>Y</math> is closed in <math>Y^X</math>.
* In addition, <math>L(X; Y)</math> is dense in the space of all linear maps (continuous or not) <math>X</math> into <math>Y.</math></li>
<li>Suppose <math>X</math> and <math>Y</math> are locally convex. Any simply bounded subset of <math>L(X; Y)</math> is bounded when <math>L(X; Y)</math> has the topology of uniform convergence on convex, [[balanced set|balanced]], bounded, complete subsets of <math>X.</math> If in addition <math>X</math> is [[quasi-complete]] then the families of bounded subsets of <math>L(X; Y)</math> are identical for all <math>\mathcal{G}</math>-topologies on <math>L(X; Y)</math> such that <math>\mathcal{G}</math> is a family of bounded sets covering <math>X.</math>{{sfn|Schaefer|Wolff|1999|p=82}}</li>
</ul>
 
'''Equicontinuous subsets'''
 
<ul>
<li>The weak-closure of an [[Equicontinuous linear maps|equicontinuous subset]] of <math>L(X; Y)</math> is equicontinuous.</li>
<li>If <math>Y</math> is locally convex, then the convex balanced hull of an equicontinuous subset of <math>L(X; Y)</math> is equicontinuous.</li>
<li>Let <math>X</math> and <math>Y</math> be TVSs and assume that (1) <math>X</math> is [[barreled space|barreled]], or else (2) <math>X</math> is a [[Baire space]] and <math>X</math> and <math>Y</math> are locally convex. Then every simply bounded subset of <math>L(X; Y)</math> is equicontinuous.{{sfn|Schaefer|Wolff|1999|p=83}}</li>
<li>On an equicontinuous subset <math>H</math> of <math>L(X; Y),</math> the following topologies are identical: (1) topology of pointwise convergence on a total subset of <math>X</math>; (2) the topology of pointwise convergence; (3) the topology of precompact convergence.{{sfn|Schaefer|Wolff|1999|p=83}}</li>
</ul>
 
====Compact convergence====
 
By letting <math>\mathcal{G}</math> be the set of all compact subsets of <math>X,</math> <math>L(X; Y)</math> will have '''the topology of compact convergence''' or '''the topology of uniform convergence on compact sets''' and <math>L(X; Y)</math> with this topology is denoted by <math>L_c(X; Y)</math>.
 
The topology of compact convergence on <math>L(X; Y)</math> has the following properties:
<ul>
<li>If <math>X</math> is a [[Fréchet space]] or a [[LF-space]] and if <math>Y</math> is a [[Complete topological vector space|complete]] locally convex Hausdorff space then <math>L_c(X; Y)</math> is complete.</li>
<li>On [[Equicontinuous linear maps|equicontinuous subsets]] of <math>L(X; Y),</math> the following topologies coincide:
* The topology of pointwise convergence on a dense subset of <math>X,</math>
* The topology of pointwise convergence on <math>X,</math>
* The topology of compact convergence.
* The topology of precompact convergence.</li>
<li>If <math>X</math> is a [[Montel space]] and <math>Y</math> is a topological vector space, then <math>L_c(X; Y)</math> and <math>L_b(X; Y)</math> have identical topologies.</li>
</ul>
 
====Topology of bounded convergence====
 
By letting <math>\mathcal{G}</math> be the set of all bounded subsets of <math>X,</math> <math>L(X; Y)</math> will have '''the topology of bounded convergence on <math>X</math>''' or '''the topology of uniform convergence on bounded sets''' and <math>L(X; Y)</math> with this topology is denoted by <math>L_b(X; Y)</math>.{{sfn|Narici|Beckenstein|2011|pp=371-423}}
 
The topology of bounded convergence on <math>L(X; Y)</math> has the following properties:
<ul>
<li>If <math>X</math> is a [[bornological space]] and if <math>Y</math> is a [[Complete topological vector space|complete]] locally convex Hausdorff space then <math>L_b(X; Y)</math> is complete.</li>
<li>If <math>X</math> and <math>Y</math> are both normed spaces then the topology on <math>L(X; Y)</math> induced by the usual operator norm is identical to the topology on <math>L_b(X; Y)</math>.{{sfn|Narici|Beckenstein|2011|pp=371-423}}
* In particular, if <math>X</math> is a normed space then the usual norm topology on the continuous dual space <math>X^{\prime}</math> is identical to the topology of bounded convergence on <math>X^{\prime}</math>.</li>
<li>Every equicontinuous subset of <math>L(X; Y)</math> is bounded in <math>L_b(X; Y)</math>.</li>
</ul>
 
==Polar topologies==
{{Main|Polar topology}}
 
Throughout, we assume that <math>X</math> is a TVS.
 
===𝒢-topologies versus polar topologies===
 
If <math>X</math> is a TVS whose [[Bounded set (topological vector space)|bounded]] subsets are exactly the same as its {{em|weakly}} bounded subsets (e.g. if <math>X</math> is a Hausdorff locally convex space), then a <math>\mathcal{G}</math>-topology on <math>X^{\prime}</math> (as defined in this article) is a [[polar topology]] and conversely, every polar topology if a <math>\mathcal{G}</math>-topology.
Consequently, in this case the results mentioned in this article can be applied to polar topologies.
 
However, if <math>X</math> is a TVS whose bounded subsets are {{em|not}} exactly the same as its {{em|weakly}} bounded subsets, then the notion of "bounded in <math>X</math>" is stronger than the notion of "<math>\sigma\left(X, X^{\prime}\right)</math>-bounded in <math>X</math>" (i.e. bounded in <math>X</math> implies <math>\sigma\left(X, X^{\prime}\right)</math>-bounded in <math>X</math>) so that a <math>\mathcal{G}</math>-topology on <math>X^{\prime}</math> (as defined in this article) is {{em|not}} necessarily a polar topology.
One important difference is that polar topologies are always locally convex while <math>\mathcal{G}</math>-topologies need not be.
 
Polar topologies have stronger results than the more general topologies of uniform convergence described in this article and we refer the read to the main article: [[polar topology]].
We list here some of the most common polar topologies.
 
===List of polar topologies===
 
Suppose that <math>X</math> is a TVS whose bounded subsets are the same as its weakly bounded subsets.
 
'''Notation''': If <math>\Delta(Y, X)</math> denotes a polar topology on <math>Y</math> then <math>Y</math> endowed with this topology will be denoted by <math>Y_{\Delta(Y, X)}</math> or simply <math>Y_{\Delta}</math> (e.g. for <math>\sigma(Y, X)</math> we would have <math>\Delta = \sigma</math> so that <math>Y_{\sigma(Y, X)}</math> and <math>Y_{\sigma}</math> all denote <math>Y</math> with endowed with <math>\sigma(Y, X)</math>).
 
{| class="wikitable"
|-
! ><math>\mathcal{G} \subseteq \wp(X)</math><br/>("topology of uniform convergence on ...")
! Notation
! Name ("topology of...")
! Alternative name
|-
| finite subsets of <math>X</math>
| <math>\sigma(Y, X)</math><br/><math>s(Y, X)</math>
| pointwise/simple convergence
| [[Weak topology|weak/weak* topology]]
|-
| <math>\sigma(X, Y)</math>-compact [[Absolutely convex set|disk]]s
| <math>\tau(Y, X)</math>
|
| [[Mackey topology]]
|-
| <math>\sigma(X, Y)</math>-compact convex subsets
| <math>\gamma(Y, X)</math>
| compact convex convergence
|
|-
| <math>\sigma(X, Y)</math>-compact subsets<br/>(or balanced <math>\sigma(X, Y)</math>-compact subsets)
| <math>c(Y, X)</math>
| compact convergence
|
|-
| <math>\sigma(X, Y)</math>-bounded subsets
| <math>b(Y, X)</math><br/><math>\beta(Y, X)</math>
| bounded convergence
| [[Strong dual space|strong topology]]
|}
 
==𝒢-ℋ topologies on spaces of bilinear maps==
 
We will let <math>\mathcal{B}(X, Y; Z)</math> denote the space of separately continuous bilinear maps and <math>B(X, Y; Z)</math> denote the space of continuous bilinear maps, where <math>X, Y,</math> and <math>Z</math> are topological vector space over the same field (either the real or complex numbers).
In an analogous way to how we placed a topology on <math>L(X; Y)</math> we can place a topology on <math>\mathcal{B}(X, Y; Z)</math> and <math>B(X, Y; Z)</math>.
 
Let <math>\mathcal{G}</math> (respectively, <math>\mathcal{H}</math>) be a family of subsets of <math>X</math> (respectively, <math>Y</math>) containing at least one non-empty set.
Let <math>\mathcal{G} \times \mathcal{H}</math> denote the collection of all sets <math>G \times H</math> where <math>G \in \mathcal{G},</math> <math>H \in \mathcal{H}.</math>
We can place on <math>Z^{X \times Y}</math> the <math>\mathcal{G} \times \mathcal{H}</math>-topology, and consequently on any of its subsets, in particular on <math>B(X, Y; Z)</math> and on <math>\mathcal{B}(X, Y; Z)</math>.
This topology is known as the '''<math>\mathcal{G}-\mathcal{H}</math>-topology''' or as the '''topology of uniform convergence on the products <math>G \times H</math> of <math>\mathcal{G} \times \mathcal{H}</math>'''.
 
However, as before, this topology is not necessarily compatible with the vector space structure of <math>\mathcal{B}(X, Y; Z)</math> or of <math>B(X, Y; Z)</math> without the additional requirement that for all bilinear maps, <math>b</math> in this space (that is, in <math>\mathcal{B}(X, Y; Z)</math> or in <math>B(X, Y; Z)</math>) and for all <math>G \in \mathcal{G}</math> and <math>H \in \mathcal{H},</math> the set <math>b(G, H)</math> is bounded in <math>X.</math>
If both <math>\mathcal{G}</math> and <math>\mathcal{H}</math> consist of bounded sets then this requirement is automatically satisfied if we are topologizing <math>B(X, Y; Z)</math> but this may not be the case if we are trying to topologize <math>\mathcal{B}(X, Y; Z)</math>.
The <math>\mathcal{G}-\mathcal{H}</math>-topology on <math>\mathcal{B}(X, Y; Z)</math> will be compatible with the vector space structure of <math>\mathcal{B}(X, Y; Z)</math> if both <math>\mathcal{G}</math> and <math>\mathcal{H}</math> consists of bounded sets and any of the following conditions hold:
* <math>X</math> and <math>Y</math> are barrelled spaces and <math>Z</math> is locally convex.
* <math>X</math> is a [[F-space]], <math>Y</math> is metrizable, and <math>Z</math> is Hausdorff, in which case <math>\mathcal{B}(X, Y; Z) = B(X, Y; Z).</math>
* <math>X, Y,</math> and <math>Z</math> are the strong duals of reflexive Fréchet spaces.
* <math>X</math> is normed and <math>Y</math> and <math>Z</math> the strong duals of reflexive Fréchet spaces.
 
===The ε-topology===
{{Main|Injective tensor product}}
 
Suppose that <math>X, Y,</math> and <math>Z</math> are locally convex spaces and let <math>\mathcal{G}^{\prime}</math> and <math>\mathcal{H}^{\prime}</math> be the collections of [[Equicontinuous linear functionals|equicontinuous subsets]] of <math>X^{\prime}</math> and <math>X^{\prime}</math>, respectively.
Then the <math>\mathcal{G}^{\prime}-\mathcal{H}^{\prime}</math>-topology on <math>\mathcal{B}\left(X^{\prime}_{b\left(X^{\prime}, X\right)}, Y^{\prime}_{b\left(X^{\prime}, X\right)}; Z\right)</math> will be a topological vector space topology.
This topology is called the ε-topology and <math>\mathcal{B}\left(X^{\prime}_{b\left(X^{\prime}, X\right)}, Y_{b\left(X^{\prime}, X\right)}; Z\right)</math> with this topology it is denoted by <math>\mathcal{B}_{\epsilon}\left(X^{\prime}_{b\left(X^{\prime}, X\right)}, Y^{\prime}_{b\left(X^{\prime}, X\right)}; Z\right)</math> or simply by <math>\mathcal{B}_{\epsilon}\left(X^{\prime}_{b}, Y^{\prime}_{b}; Z\right).</math>
 
Part of the importance of this vector space and this topology is that it contains many subspace, such as <math>\mathcal{B}\left(X^{\prime}_{\sigma\left(X^{\prime}, X\right)}, Y^{\prime}_{\sigma\left(X^{\prime}, X\right)}; Z\right),</math> which we denote by <math>\mathcal{B}\left(X^{\prime}_{\sigma}, Y^{\prime}_{\sigma}; Z\right).</math>
When this subspace is given the subspace topology of <math>\mathcal{B}_{\epsilon}\left(X^{\prime}_{b}, Y^{\prime}_{b}; Z\right)</math> it is denoted by <math>\mathcal{B}_{\epsilon}\left(X^{\prime}_{\sigma}, Y^{\prime}_{\sigma}; Z\right).</math>
 
In the instance where <math>Z</math> is the field of these vector spaces, <math>\mathcal{B}\left(X^{\prime}_{\sigma}, Y^{\prime}_{\sigma}\right)</math> is a [[tensor product]] of <math>X</math> and <math>Y.</math>
In fact, if <math>X</math> and <math>Y</math> are locally convex Hausdorff spaces then <math>\mathcal{B}\left(X^{\prime}_{\sigma}, Y^{\prime}_{\sigma}\right)</math> is vector space-isomorphic to <math>L\left(X^{\prime}_{\sigma\left(X^{\prime}, X\right)}; Y_{\sigma(Y^{\prime}, Y)}\right),</math> which is in turn is equal to <math>L\left(X^{\prime}_{\tau\left(X^{\prime}, X\right)}; Y\right).</math>
 
These spaces have the following properties:
* If <math>X</math> and <math>Y</math> are locally convex Hausdorff spaces then <math>\mathcal{B}_{\varepsilon}\left(X^{\prime}_{\sigma}, Y^{\prime}_{\sigma}\right)</math> is complete if and only if both <math>X</math> and <math>Y</math> are complete.
* If <math>X</math> and <math>Y</math> are both normed (respectively, both Banach) then so is <math>\mathcal{B}_{\epsilon}\left(X^{\prime}_{\sigma}, Y^{\prime}_{\sigma}\right)</math>
 
==See also==
 
* {{annotated link|Bornological space}}
* {{annotated link|Bounded linear operator}}
* {{annotated link|Dual system}}
* {{annotated link|Dual topology}}
* {{annotated link|List of topologies}}
* {{annotated link|Modes of convergence}}
* {{annotated link|Operator norm}}
* {{annotated link|Polar topology}}
* {{annotated link|Strong dual space}}
* {{annotated link|Topologies on the set of operators on a Hilbert space}}
* {{annotated link|Uniform convergence}}
* {{annotated link|Uniform space}}
* {{annotated link|Weak topology}}
** {{annotated link|Vague topology}}
 
==References==
 
{{reflist|group=note}}
{{reflist|group=proof}}
{{reflist}}
 
==Bibliography==
{{Functional Analysis}}
 
* {{Grothendieck Topological Vector Spaces}} <!--{{sfn|Grothendieck|1973|p=}}-->
[[Category:Topological vector spaces]]
* {{Hogbe-Nlend Bornologies and Functional Analysis}} <!-- {{sfn|Hogbe-Nlend|1977|p=}} -->
* {{Jarchow Locally Convex Spaces}} <!--{{sfn|Jarchow|1981|p=}}-->
* {{Khaleelulla Counterexamples in Topological Vector Spaces}} <!-- {{sfn|Khaleelulla|1982|p=}} -->
* {{Narici Beckenstein Topological Vector Spaces|edition=2}} <!-- {{sfn|Narici|Beckenstein|2011|p=}} -->
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!-- {{sfn|Schaefer|Wolff|1999|p=}} -->
* {{Trèves François Topological vector spaces, distributions and kernels}} <!-- {{sfn|Trèves|2006|p=}} -->
 
{{Functional analysis}}
{{Duality and spaces of linear maps}}
{{Topological vector spaces}}
 
[[Category:Functional analysis]]
{{mathanalysis-stub}}
[[Category:Topological vector spaces]]
[[Category:Topology of function spaces]]