Content deleted Content added
Reverted good faith edits by 94.209.202.6 (talk): Probably talking about Definite quadratic form? |
No edit summary |
||
(16 intermediate revisions by 9 users not shown) | |||
Line 1:
{{Short description|Bimodal function}}
In [[mathematics]], a '''positive-definite function''' is, depending on the context, either of two types of [[function (mathematics)|function]].
==
A function <math> f: \mathbb{R} \to \mathbb{C} </math> :<math> A = \left(a_{ij}\right)_{i,j=1}^n~, \quad a_{ij} = f(x_i - x_j) </math>
is a [[positive-definite matrix|positive ''semi-''definite
By definition, a positive semi-definite matrix, such as <math>A</math>, is [[Hermitian matrix|Hermitian]]; therefore ''f''(−''x'') is the [[complex conjugate]] of ''f''(''x'')).
In particular, it is necessary (but not sufficient) that
Line 14 ⟶ 19:
(these inequalities follow from the condition for ''n'' = 1, 2.)
A function is ''negative semi-definite'' if the inequality is reversed. A function is ''
===Examples===
If <math>(X, \langle \cdot, \cdot \rangle)</math> is a real [[inner product space]], then <math>g_y \colon X \to \mathbb{C}</math>, <math>x \mapsto \exp(i \langle y, x \rangle)</math> is positive definite for every <math>y \in X</math>: for all <math>u \in \mathbb{C}^n</math> and all <math>x_1, \ldots, x_n</math> we have
:<math>
u^* A^{(g_y)} u
= \sum_{j, k = 1}^{n} \overline{u_k} u_j e^{i \langle y, x_k - x_j \rangle}
= \sum_{k = 1}^{n} \overline{u_k} e^{i \langle y, x_k \rangle} \sum_{j = 1}^{n} u_j e^{- i \langle y, x_j \rangle}
= \left| \sum_{j = 1}^{n} \overline{u_j} e^{i \langle y, x_j \rangle} \right|^2
\ge 0.
</math>
As nonnegative linear combinations of positive definite functions are again positive definite, the [[cosine function]] is positive definite as a nonnegative linear combination of the above functions:
:<math>
\cos(x) = \frac{1}{2} ( e^{i x} + e^{- i x}) = \frac{1}{2}(g_{1} + g_{-1}).
</math>
One can create a positive definite function <math>f \colon X \to \mathbb{C}</math> easily from positive definite function <math>f \colon \R \to \mathbb C</math> for any [[vector space]] <math>X</math>: choose a [[linear function]] <math>\phi \colon X \to \R</math> and define <math>f^* := f \circ \phi</math>.
Then
:<math>
u^* A^{(f^*)} u
= \sum_{j, k = 1}^{n} \overline{u_k} u_j f^*(x_k - x_j)
= \sum_{j, k = 1}^{n} \overline{u_k} u_j f(\phi(x_k) - \phi(x_j))
= u^* \tilde{A}^{(f)} u
\ge 0,
</math>
where <math>\tilde{A}^{(f)} = \big( f(\phi(x_i) - \phi(x_j)) = f(\tilde{x}_i - \tilde{x}_j) \big)_{i, j}</math> where <math>\tilde{x}_k := \phi(x_k)</math> are distinct as <math>\phi</math> is [[linear]].<ref>{{cite book |last1=Cheney |first1=Elliot Ward |title=A course in Approximation Theory |date=2009 |publisher=American Mathematical Society |isbn=9780821847985 |pages=77–78 |url=https://books.google.com/books?id=II6DAwAAQBAJ |access-date=3 February 2022}}</ref>
===Bochner's theorem===
Line 37 ⟶ 64:
One can define positive-definite functions on any [[locally compact abelian topological group]]; Bochner's theorem extends to this context. Positive-definite functions on groups occur naturally in the [[representation theory]] of groups on [[Hilbert space]]s (i.e. the theory of [[unitary representation]]s).
==Definition 2==
Alternatively, a function <math>f : \reals^n \to \reals</math> is called ''positive-definite'' on a [[neighborhood (mathematics)|neighborhood]] ''D'' of the origin if <math>f(0) = 0</math> and <math>f(x) > 0</math> for every non-zero <math>x \in D</math>.<ref>{{cite book|last=Verhulst|first=Ferdinand|title=Nonlinear Differential Equations and Dynamical Systems|edition=2nd|publisher=Springer|year=1996|isbn=3-540-60934-2}}</ref><ref>{{cite book|last=Hahn|first=Wolfgang|title=Stability of Motion|url=https://archive.org/details/stabilityofmotio0000hahn|url-access=registration|publisher=Springer|year=1967}}</ref>
==See also==
* [[Positive definiteness]]
* [[Positive-definite kernel]]
|