Content deleted Content added
→Definition 2: Rewrite and improve organization. |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 5:
Let <math>\mathbb{R}</math> be the set of [[real number]]s and <math>\mathbb{C}</math> be the set of [[complex number]]s.
A function <math> f: \mathbb{R} \to \mathbb{C} </math> is called ''positive semi-definite'' if
:<math> A = \left(a_{ij}\right)_{i,j=1}^n~, \quad a_{ij} = f(x_i - x_j) </math>
is a [[positive-definite matrix|positive ''semi-''definite matrix]].{{citation needed|date=June 2023}}
By definition, a positive semi-definite matrix, such as <math>A</math>, is [[Hermitian matrix|Hermitian]]; therefore ''f''(−''x'') is the [[complex conjugate]] of ''f''(''x'')).
Line 72:
==See also==
* [[Positive definiteness]]
* [[Positive-definite kernel]]
|