Content deleted Content added
m →References: cite repair; |
Add one more link to Chinese remainder theorem |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1:
{{Short description|Algorithm for computing logarithms}}
[[File:Pohlig-Hellman-Diagram.svg|thumb|350px|alt=Pohlig Hellman Algorithm|Steps of the Pohlig–Hellman algorithm.]]
In [[group theory]], the '''Pohlig–Hellman algorithm''', sometimes credited as the '''Silver–Pohlig–Hellman algorithm''',<ref name="Mollin06p344">[[#Mollin06|Mollin 2006]], pg. 344</ref> is a special-purpose [[algorithm]] for computing [[discrete logarithm]]s in a [[finite abelian group]] whose order is a [[smooth integer]].
The algorithm was introduced by Roland Silver, but first published by [[Stephen Pohlig]] and [[Martin Hellman]], who credit Silver with its earlier
== Groups of prime-power order ==
Line 18 ⟶ 19:
:## Set <math>x_{k+1}:=x_k+p^kd_k</math>.
:# Return <math>x_e</math>.
== The general algorithm ==
Line 33 ⟶ 34:
:# Solve the simultaneous congruence <math display="block">x\equiv x_i\pmod{p_i^{e_i}}
\quad\forall i\in\{1,\dots,r\}
\text{.}</math>The [[Chinese remainder theorem]] guarantees there exists a unique solution <math>x\in\{0,\dots,n-1\}</math>.
:# Return <math>x</math>.
The correctness of this algorithm can be verified via the [[Abelian group#Classification|classification of finite abelian groups]]: Raising <math>g</math> and <math>h</math> to the power of <math>n/p_i^{e_i}</math> can be understood as the projection to the factor group of order <math>p_i^{e_i}</math>.
Line 45 ⟶ 46:
==References==
*{{cite book|title=An Introduction To Cryptography|url=https://archive.org/details/An_Introduction_to_Cryptography_Second_Edition|last=Mollin|first= Richard|date=2006-09-18|publisher=Chapman and Hall/CRC|edition=2nd|isbn=978-1-58488-618-1|page=[https://archive.org/details/An_Introduction_to_Cryptography_Second_Edition/page/n353 344]|ref=Mollin06}}
*{{cite journal |
*{{cite book|first1=Alfred J.|last1=Menezes|author-link1=Alfred Menezes|first2=Paul C.|last2=van Oorschot|author-link2=Paul van Oorschot|first3=Scott A.|last3=Vanstone|author-link3=Scott Vanstone|title=Handbook of Applied Cryptography|url=https://archive.org/details/handbookofapplie0000mene/page/107|publisher=[[CRC Press]]|year=1997|pages=[https://archive.org/details/handbookofapplie0000mene/page/107 107–109]|chapter=Number-Theoretic Reference Problems|chapter-url=http://www.cacr.math.uwaterloo.ca/hac/about/chap3.pdf|isbn=0-8493-8523-7|ref=Menezes97|url-access=registration}}
|