Content deleted Content added
Undid revision 1252197754 by 213.176.68.212 (talk) |
|||
(17 intermediate revisions by 11 users not shown) | |||
Line 5:
where <math> \mathbf{x}_{k} </math> and <math> \mathbf{y}_{k} </math> are known vectors, <math> \, \propto </math> denotes equality up to an unknown scalar multiplication, and <math> \mathbf{A} </math> is a matrix (or linear transformation) which contains the unknowns to be solved.
This type of relation appears frequently in [[projective geometry]]. Practical examples include the relation between 3D points in a scene and their projection onto the image plane of a [[Pinhole camera model|pinhole camera]],<ref>{{cite journal | last=Abdel-Aziz | first=Y.I. | last2=Karara | first2=H.M. | title=Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry | journal=Photogrammetric Engineering & Remote Sensing | publisher=American Society for Photogrammetry and Remote Sensing | volume=81 | issue=2 | date=2015-02-01 | issn=0099-1112 | doi=10.14358/pers.81.2.103 | pages=103–107| doi-access=free }}</ref> and [[Homography (computer vision)|homographies]].
== Introduction ==
An ordinary [[system of linear
: <math> \mathbf{x}_{k} = \mathbf{A} \, \mathbf{y}_{k} </math> for <math> \, k = 1, \ldots, N </math>
Line 24:
== Example ==
Suppose that <math> k \in \{1, ..., N\} </math>. Let <math> \mathbf{x}_{k} = (x_{1k}, x_{2k}) \in \mathbb{R}^{2} </math> and <math> \mathbf{y}_{k} = (y_{1k}, y_{2k}, y_{3k}) \in \mathbb{R}^{3} </math> be two
: <math> \alpha_{k} \, \mathbf{x}_{k} = \mathbf{A} \, \mathbf{y}_{k}
where <math> \alpha_{k} \neq 0 </math> is the unknown scalar factor related to equation ''k''.
Line 36:
and multiply both sides of the equation with <math> \mathbf{x}_{k}^{T} \, \mathbf{H} </math> from the left
:<math> \begin{align}
:<math> \alpha_{k} \, \mathbf{x}_{k}^{T} \, \mathbf{H} \, \mathbf{x}_{k} = \mathbf{x}_{k}^{T} \, \mathbf{H} \, \mathbf{A} \, \mathbf{y}_{k} </math> for <math> \, k = 1, \ldots, N .</math>▼
(\mathbf{x}_{k}^{T} \, \mathbf{H}) \, \alpha_{k} \, \mathbf{x}_{k} &= (\mathbf{x}_{k}^{T} \, \mathbf{H}) \, \mathbf{A} \, \mathbf{y}_{k} \\
▲
\end{align}
</math>
Since <math> \mathbf{x}_{k}^{T} \, \mathbf{H} \, \mathbf{x}_{k} = 0, </math> the following homogeneous equations, which no longer contain the unknown scalars, are at hand
: <math>
In order to solve <math> \mathbf{A} </math> from this set of equations, consider the elements of the vectors <math> \mathbf{x}_{k} </math> and <math> \mathbf{y}_{k} </math> and matrix <math> \mathbf{A} </math>:
Line 50 ⟶ 54:
: <math> 0 = a_{11} \, x_{2k} \, y_{1k} - a_{21} \, x_{1k} \, y_{1k} + a_{12} \, x_{2k} \, y_{2k} - a_{22} \, x_{1k} \, y_{2k} + a_{13} \, x_{2k} \, y_{3k} - a_{23} \, x_{1k} \, y_{3k} </math> for <math> \, k = 1, \ldots, N. </math>
This can also be written in the matrix form:
:<math> 0 = \mathbf{b}_{k}^{T} \, \mathbf{a} </math> for <math> \, k = 1, \ldots, N </math>
Line 58 ⟶ 62:
: <math> \mathbf{b}_{k} = \begin{pmatrix} x_{2k} \, y_{1k} \\ -x_{1k} \, y_{1k} \\ x_{2k} \, y_{2k} \\ -x_{1k} \, y_{2k} \\ x_{2k} \, y_{3k} \\ -x_{1k} \, y_{3k} \end{pmatrix} </math> and <math> \mathbf{a} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{12} \\ a_{22} \\ a_{13} \\ a_{23} \end{pmatrix}. </math>
:<math> \mathbf{0} = \mathbf{B} \, \mathbf{a} </math>
where <math> \mathbf{B} </math> is a <math> N \times 6 </math> matrix which holds the known vectors <math> \mathbf{b}_{k} </math> in its rows. The
In practice the vectors <math> \mathbf{x}_{k} </math> and <math> \mathbf{y}_{k} </math> may contain noise which means that the similarity equations are only approximately valid. As a consequence, there may not be a vector <math> \mathbf{a} </math> which solves the homogeneous equation <math> \mathbf{0} = \mathbf{B} \, \mathbf{a} </math> exactly. In these cases, a [[total least squares]] solution can be used by choosing <math> \mathbf{a} </math> as a right singular vector corresponding to the smallest singular value of <math> \mathbf{B}. </math>
Line 112 ⟶ 116:
== External links ==
* [
* [
[[Category:Geometry in computer vision]]
|