Bibi-binary: Difference between revisions

Content deleted Content added
More translation
Monkbot (talk | contribs)
m Task 20: replace {lang-??} templates with {langx|??} ‹See Tfd› (Replaced 1);
 
(22 intermediate revisions by 16 users not shown)
Line 1:
{{Short description|Hexadecimal number system}}
[[Image:Table de correspondance entre le Bibinaire et les autres notations.svg|520px|thumb|right|Note: each Bibi digit is formed from a square arranging the 1-bits in its binary representation. If only a single bit is 1 the line starts at the centre and ends in that bit's corner; otherwise it relies on the order of the positions of the 1-bits. When there are exactly two 1-bits, the line passes through the centre. The forms are rounded when there are less than three 1-bits, and use sharp corners when three or four of the bits are 1.]]The '''Bibi-binary''' system for numeric notation (in French '''système Bibi-binaire''', or abbreviated "'''système Bibi'''") was first described in 1968<ref>Brevet d'invention n° 1.569.028, ''Procédé de codification de l'information'', Robert Jean Lapointe, demandé le 28 mars 1968, délivré le 21 avril 1969. [http://bases-brevets.inpi.fr/fr/document/FR1569028/publications.html Downloaded] from [[Institut national de la propriété industrielle|INPI]].</ref> by [[Robert Lapointe|Robert "Boby" Lapointe]] (1922-1972), based on the concept of [[hexadecimal]] notation. At the time, it attracted the attention of [[André Lichnerowicz]], then engaged in studies at the [[University of Lyon]]. It found some use in a variety of unforeseen applications: stochastic poetry, stochastic art, colour classification, aleatory music, architectural symbolism, etc.{{ref?}}
[[Image:Table de correspondance entre le Bibinaire et les autres notations.svg|520px|thumb|right|Each Bibi digit is formed from a square arranging the 1-bits in its binary representation. If only a single bit is 1 a vertical line runs through the centre and ends in that bit's corner; otherwise it relies on the order of the positions of the 1-bits. When there are exactly two 1-bits, the line passes round the centre. The forms are rounded when there are less than three 1-bits, and use sharp corners when three or four of the bits are 1.]]
 
[[Image:Table de correspondance entre le Bibinaire et les autres notations.svg|520px|thumb|right|Note: each Bibi digit is formed from a square arranging the 1-bits in its binary representation. If only a single bit is 1 the line starts at the centre and ends in that bit's corner; otherwise it relies on the order of the positions of the 1-bits. When there are exactly two 1-bits, the line passes through the centre. The forms are rounded when there are less than three 1-bits, and use sharp corners when three or four of the bits are 1.]]The '''Bibi-binary''' system for numeric notation (in French '''{{langx|fr|système Bibi-binaire'''}}, or abbreviated "'''{{lang|fr|système Bibi}}'''") wasis a [[hexadecimal]] numeral system first described in 1968<ref>Brevet d'invention n° 1.569.028, ''Procédé de codification de l'information'', Robert Jean Lapointe, demandé le 28 mars 1968, délivré le 21 avril 1969. [http://bases-brevets.inpi.fr/fr/document/FR1569028/publications.html Downloaded] from [[Institut national de la propriété industrielle|INPI]].</ref> by singer/mathematician [[RobertBoby Lapointe|Robert "Boby" Lapointe]] (1922-19721922–1972), based on the concept of [[hexadecimal]] notation. At the time, it attracted the attention of [[André Lichnerowicz]], then engaged in studies at the [[University of Lyon]]. It found some use in a variety of unforeseen applications: stochastic poetry, stochastic art, colour classification, aleatory music, architectural symbolism, etc.{{ref?}}
The notational system directly and logically encodes the binary representations of the digits in a hexadecimal (base sixteen) number. However, in place of the arabic numerals and letters currently used, it presents sixteen newly-devised symbols (thus evading any risk of confusion with the decimal system). The graphical and phonetic conception of these symbols renders the use of the Bibi-binary "language" simple and fast.
 
The notational system directly and logically encodes the binary representations of the digits in a hexadecimal (base sixteen) numbernumeral. However, inIn place of the arabicArabic numerals 0–9 and letters A–F currently used in writing hexadecimal numerals, it presents sixteen newly- devised symbols (thus evading any risk of confusion with the decimal system). The graphical and phonetic conception of these symbols rendersis meant to render the use of the Bibi-binary "language" simple and fast.
 
The description of the language first appeared in ''Les Cerveaux non-humains'' ("Non-human brains"),<ref>Jean-Marc Font, Jean-Claude Quiniou, Gérard Verroust, ''Les Cerveaux non-humains : introduction à l'Informatique'', Denoël, Paris, 1970.</ref> and the system can also be found in ''Boby Lapointe'' by Huguette Long Lapointe.<ref>Huguette Long Lapointe, ''Boby Lapointe'', Encre, Paris, 1980 {{ISBN|2-86418-148-7}}</ref>
 
== Why ''Bibi''Name ==
 
The central observation driving this system is that sixteen can be written as 2 to the power of 2, to the power of 2. As we use the term [[binary number|binary]] for numbers written in base two, Lapointe reasoned that one could also say "bi-binary" for base four, and thus "bibi-binary" for base 16. Its name may also be a pun,{{ref?}} as the word ''bibi'' in French is slang for "me" or "myself";<ref>{{citation|url=https://madd-bordeaux.fr/sites/BOR-MADD-DRUPAL/files/2020-12/documents/Livret%20anglais_IMPRESSION.pdf|title=Bibi-binaire code|work=Phenomena: Design lifts the veil on the invisible technologies of everyday life|type=Guide booklet|pages=8–9|publisher=Musée des arts décoratifs et du design, Bordeaux|date=November 2018 – March 2019}}</ref> various forms of word play were at the centre of Lapointe's artistic œuvre.
 
== Pronunciation ==
 
In addition to unique graphical representations, Lapointe also devised a pronunciation for each of the sixteen digits. Using four consonants (HBKD) and four vowels (OAEI), one obtains sixteen combinations:
 
HO, HA, HE, HI, BO, BA, BE, BI, KO, KA, KE, KI, DO, DA, DE, DI.
<!-- Translating this into English...
 
To express any number, it suffices to enumerate the (hexadecimal) digits that make it up. For example: the number written as "2000" in decimal, which translates to "7D0" in conventionally-written hexadecimal, would in Bibi-binary be spoken aloud as "BIDAHO".
== Pourquoi ''Bibi'' ==
 
== References ==
À partir de ce postulat, [[Boby Lapointe]] inventa la notation et la prononciation de seize chiffres. À l'aide de quatre consonnes et de quatre voyelles, on obtient les seize combinaisons nécessaires :
{{reflist|30em}}
 
HO, HA, HE, HI, BO, BA, BE, BI, KO, KA, KE, KI, DO, DA, DE, DI.
 
Pour définir un nombre, il suffit d'énumérer les chiffres (hexadécimaux) qui le composent.
 
Exemple : en Bibi, le nombre ''2000'' (en base décimale), qui se traduit, en hexadécimal, par ''7D0'', est appelé ''BIDAHO''.
 
== Nombres négatifs ==
 
Contrairement à la numération retenue dans les ordinateurs actuels, le Bibi représente les nombres négatifs en [[complément à un]]{{refsou}}, et non [[Complément à deux|à deux]].
 
Ainsi :
* +7 s'écrit 0 0111
* -7 s'écrit 1 1000
et leur addition donne :
 
1 1111 (une des 2 représentations de « zéro » dans ce système ; « zéro » y est aussi représenté par 0 0000).
 
Sur les ordinateurs contemporains, en notation binaire classique, -7 s'écrit 1 1001 (on propage le « 1 » dans les bits supérieurs) ; et l'addition de -7 et 7 donnera 0 0000. Il n'y a ainsi qu'une seule notation pour le chiffre zéro.
 
 
{{Palette|Base de numération positionnelle}}
{{Portail|mathématiques|informatique théorique}}
 
{{DEFAULTSORT:Bibi, numeration, système bibi-binaire}}
-->
 
== External links ==
 
* [http://www.graner.net/nicolas/nombres/bibibinaire.php Conversion en ligne décimal ↔ bibi-binaire] (in French)
 
 
== References ==
<references />
 
[[Category:Hexadecimal numeral system]]