Regular conditional probability: Difference between revisions

Content deleted Content added
 
(One intermediate revision by one other user not shown)
Line 27:
 
As with conditional expectation, this can be further generalized to conditioning on a sigma algebra <math>\mathcal{F}</math>. In that case the conditional distribution is a function <math>\Omega \times \mathcal{B}(\mathbb{R}) \to [0, 1]</math>:
:<math> \kappa_{Y\mid\mathcal{F}}(\omega, A) = \operatorname E[1_{Y \in A} \mid \mathcal{F}](\omega)</math>
 
=== Regularity ===
Line 36:
In other words <math>\kappa_{Y\mid X}</math> is a [[Markov kernel]].
 
The second condition holds trivially, but the proof of the first is more involved. It can be shown that if ''Y'' is a random element <math>\Omega \to S</math> in a [[Radon space]] ''S'', there exists a <math>\kappa_{Y\mid X}</math> that satisfies the first condition.<ref>{{cite book |last1=Klenke |first1=Achim |title=Probability theory : a comprehensive course |date=30 August 2013 |___location=London |isbn=978-1-4471-5361-0 |edition=Second}}</ref> It is possible to construct more general spaces where a regular conditional probability distribution does not exist.<ref>Faden, A.M., 1985. The existence of regular conditional probabilities: necessary and sufficient conditions. ''The Annals of Probability'', 13(1), pp.&nbsp;288–298.</ref>
 
=== Relation to conditional expectation ===