Content deleted Content added
Tag: Disambiguation links added |
Added short description Tags: Mobile edit Mobile app edit Android app edit App description add |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 1:
{{Short description|Statistics concept}}
In [[statistics]] the '''mean squared prediction error'''
▲In [[statistics]] the '''mean squared prediction error''' or '''mean squared error of the predictions''' of a [[smoothing]] or [[curve fitting]] procedure is the expected value of the squared difference between the fitted values implied by the predictive function <math>\widehat{g}</math> and the values of the (unobservable) function ''g''. It is an inverse measure of the explanatory power of <math>\widehat{g},</math> and can be used in the process of [[cross-validation (statistics)|cross-validation]] of an estimated model.
==Formulation==
If the smoothing or fitting procedure has [[projection matrix]] (i.e., hat matrix) ''L'', which maps the observed values vector <math>y</math> to [[predicted
:<math>\operatorname{
:<math>
The MSPE can be decomposed into two terms: the mean of squared biases of the fitted values and the mean of variances of the fitted values:▼
▲The MSPE can be decomposed into two terms: the
▲:<math>n\cdot\operatorname{MSPE}(L)=\sum_{i=1}^n\left(\operatorname{E}\left[\widehat{g}(x_i)\right]-g(x_i)\right)^2+\sum_{i=1}^n\operatorname{var}\left[\widehat{g}(x_i)\right].</math>
:<math>\operatorname{MSPE}=\operatorname{ME}^2 + \operatorname{VAR},</math>
:<math>\operatorname{ME}=\operatorname{E}\left[ \widehat{g}(x_i) - g(x_i)\right]</math>
:<math>\operatorname{VAR}=\operatorname{E}\left[\left(\widehat{g}(x_i) - \operatorname{E}\left[{g}(x_i)\right]\right)^2\right].</math>
The quantity {{math|SSPE{{=}}''n''MSPE}} is called '''sum squared prediction error'''.
The '''root mean squared prediction error''' is the square root of MSPE: {{math|RMSPE{{=}}{{sqrt|MSPE}}}}.
==Computation of MSPE over out-of-sample data==
Line 52 ⟶ 56:
==See also==
* [[Akaike information criterion]]
* [[Bias-variance tradeoff]]
* [[Mean squared error]]
* [[Errors and residuals in statistics]]
* [[Law of total variance]]
* [[Mallows's Cp|Mallows's ''C<sub>p</sub>'']]
{{Machine learning evaluation metrics}}▼
* [[Model selection]]
==
{{reflist}}
▲*{{cite book |first=Robert S. |last=Pindyck |authorlink=Robert Pindyck |first2=Daniel L. |last2=Rubinfeld |authorlink2=Daniel L. Rubinfeld |title=Econometric Models & Economic Forecasts |___location=New York |publisher=McGraw-Hill |edition=3rd |year=1991 |isbn=0-07-050098-3 |chapter=Forecasting with Time-Series Models |pages=[https://archive.org/details/econometricmodel00pind/page/516 516–535] |url=https://archive.org/details/econometricmodel00pind/page/516 }}
▲{{Machine learning evaluation metrics}}
{{DEFAULTSORT:Mean Squared Prediction Error}}
|