Content deleted Content added
Badly/inappropriately written section with accuracy issues, taken almost verbatim from a discussion on a web forum. Tag: section blanking |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 4:
In point-to-point systems, precoding means that multiple data streams are emitted from the transmit antennas with independent and appropriate weightings such that the link throughput is maximized at the receiver output. In [[multi-user MIMO]], the data streams are intended for different users (known as [[space-division multiple access|SDMA]]) and some measure of the total [[throughput]] (e.g., the sum performance or max-min fairness) is maximized. In point-to-point systems, some of the benefits of precoding can be realized without requiring [[channel state information]] at the transmitter, while such information is essential to handle the inter-user interference in multi-user systems.<ref name=gesbert>D. Gesbert, M. Kountouris, R.W. Heath Jr., C.-B. Chae, and T. Sälzer, [https://dx.doi.org/10.1109/MSP.2007.904815 Shifting the MIMO Paradigm], IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 36-46, 2007.</ref> Precoding in the downlink of cellular networks, known as network MIMO or coordinated multipoint (CoMP), is a generalized form of multi-user MIMO that can be analyzed by the same mathematical techniques.<ref name=fnt2013>E. Björnson and E. Jorswieck, [http://kth.diva-portal.org/smash/get/diva2:608533/FULLTEXT01 Optimal Resource Allocation in Coordinated Multi-Cell Systems], Foundations and Trends in Communications and Information Theory, vol. 9, no. 2-3, pp. 113-381, 2013.</ref>
==Precoding for Point-to-Point MIMO Systems ==
Line 52 ⟶ 33:
===Linear precoding with limited channel state information===
In practice, the [[channel state information]] is limited at the transmitter due to estimation errors and quantization. Inaccurate channel knowledge may result in significant loss of system throughput, as the interference between the multiplexed streams cannot be completely controlled. In closed-loop systems, the feedback capabilities decide which precoding strategies
If the complete channel knowledge is fed back with good accuracy, then one can use strategies designed for having full channel knowledge with minor performance degradation. Zero-forcing precoding may even achieve the full multiplexing gain, but only provided that the accuracy of the channel feedback increases linearly with [[signal-to-noise ratio]] (in dB).<ref name=jindal/> Quantization and feedback of channel state information is based on [[vector quantization]], and codebooks based on Grassmannian line packing have shown good performance.<ref name=dlove2>D.J. Love, R.W. Heath, and T. Strohmer, [https://dx.doi.org/10.1109/TIT.2003.817466 Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems], IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2735–2747, 2003.</ref>
Line 63 ⟶ 44:
===DPC or DPC-like nonlinear precoding===
[[Dirty paper coding (DPC)|Dirty paper coding]] is a coding technique that pre-cancels known interference without power penalty. Only the transmitter needs to know this interference, but full [[channel state information]] is required everywhere to achieve the weighted sum capacity.<ref name=weingarten/> This category includes Costa precoding,<ref>M. Costa, [https://dx.doi.org/10.1109/TIT.1983.1056659 Writing on dirty paper], IEEE Transactions on Information Theory, vol. 29, no. 3, pp. 439–441, 1983</ref> Tomlinson-Harashima precoding<ref>M. Tomlinson, [https://dx.doi.org/10.1049/el:19710089 New automatic equalizer employing modulo arithmetic], Electronics Letters, vol. 7, no. 5, pp. 138–139, 1971</ref><ref>H. Harashima and H. Miyakawa, [
==Mathematical Description==
|