Content deleted Content added
m Remove very obscure, non-standard operators |
m Reverted edit by 117.235.189.154 (talk) to last version by 2600:1700:E8B0:5C00:D026:F97F:C668:D9F5 |
||
(30 intermediate revisions by 22 users not shown) | |||
Line 1:
{{Short description|none}}
In [[mathematics]], an [[operator (mathematics)|operator]] or [[transformation (mathematics)|transform]] is a [[function (mathematics)|function]] from one [[function space|space of functions]] to another. Operators occur commonly in [[engineering]], [[physics]] and mathematics. Many are [[integral operator]]s and [[differential operator]]s.
In the following ''L'' is an operator
Line 8 ⟶ 9:
{| class="wikitable"
|- style="background:#eaeaea"
! style="text-align: center" | Expression
! style="text-align: center" | Curve<br>definition
Line 16 ⟶ 17:
! style="background:#eafaea" colspan=4|Linear transformations
|-
| <math>L[y]=y^{(n)}
|-
| <math>L[y]=\int_a^t y \,dt</math> ||Cartesian||<math>y=y(x)</math><br><math>x=t</math>|| Integral, area
Line 32 ⟶ 33:
| <math>L[y]=\sum y=\Delta^{-1}y</math>|| || ||[[Indefinite sum]] operator (inverse operator of difference)
|-
| <math>L[y] =-(py')'+qy
|-
! style="background:#eafaea" colspan=4|Non-linear transformations
|-
| <math>F[y]=y^{[-1]}
|-
| <math>F[y]=t\,y'^{[-1]} - y\circ y'^{[-1]} </math>|| || ||[[Legendre transformation]]
|-
| <math>F[y]=f\circ y</math>|| || ||Left composition
|-▼
| <math>F[y]=\prod y</math>|| || ||[[Indefinite product]]
|-
| <math>F[y]=\frac{y'}{y}</math>|| || ||[[Logarithmic derivative]]
|-
| <math>F[y]={\frac{ty'}{y}}</math>|| || ||[[Elasticity of a function|Elasticity]]
|-
| <math>F[y]={y''' \over y'}-{3\over 2}\left({y''\over y'}\right)^2</math>|| || || [[Schwarzian derivative]]
|-
| <math>F[y]=\int_a^t |y'| \,dt </math>|| || ||[[Total variation]]
|-
| <math>F[y]=\frac{1}{t-a}\int_a^t y\,dt </math>|| || ||[[
|-
| <math>F[y]=\exp \left( \frac{1}{t-a}\int_a^t \ln y\,dt \right) </math> || || ||[[Geometric mean
|-
| <math>F[y]= -\frac{y}{y'}</math>|| Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=3|[[Subtangent]]
Line 62 ⟶ 71:
| <math>F[r]= \int_a^t \sqrt { r^2 + r'^2 }\, dt</math>||Polar||<math>r=r(\phi)</math><br><math>\phi=t</math>
|-
| <math>F[
|-
| <math>F[x,y] = \int_a^t\sqrt[3]{x'y''-x''y'}\, dt </math> || Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>
|-
| <math>F[x,y,z]=\int_a^t\sqrt[3]{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}dt</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math><br><math>z=z(t)</math>
|-
| <math>F[y]=\frac{y''}{(1+y'^2)^{3/2}}</math>||Cartesian||<math>y=y(x)</math><br><math>x=t</math>|| rowspan=4|[[Curvature]]
Line 90 ⟶ 99:
| <math>F[r]=t (r'\circ r^{[-1]})</math>||Intrinsic||<math>r=r(s)</math><br><math>s=t</math>
|-
|<math>X[x,y]=x-\frac{x'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}</math><br><br><math>Y[x,y]=y-\frac{y'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>||
|-
|<math>X[x,y]=\frac{(xy'-yx')y'}{x'^2 + y'^2}</math><br><br><math>Y[x,y]=\frac{(yx'-xy')x'}{x'^2 + y'^2}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>||
|-
|<math>X[x,y]=\frac{(x'^2-y'^2)y'+2xyx'}{xy'-yx'}</math><br><br><math>Y[x,y]=\frac{(x'^2-y'^2)x'+2xyy'}{xy'-yx'}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>||
|-
| <math>X[y] = \int_a^t \cos \left[\int_a^t \frac{1}{y} \,dt\right] dt</math><br><br><math>Y[y] = \int_a^t \sin \left[\int_a^t \frac{1}{y} \,dt\right] dt</math>||Intrinsic||<math>y=r(s)</math><br><math>s=t</math>||Intrinsic to<br>Cartesian<br>transformation
Line 100 ⟶ 109:
! style="background:#eafaea" colspan=4|Metric functionals
|-
| <math>F[y]=
|-
| <math>F[x,y]=\int_E xy \, dt</math>|| || ||[[Inner product]]
|-
| <math>F[x,y]=\arccos \left[\frac{\int_E xy \, dt}{\sqrt{\int_E x^2 \, dt}\sqrt{\int_E y^2 \, dt}}\right]</math>|| || ||[[
|-
! style="background:#eafaea" colspan=4|Distribution functionals
Line 110 ⟶ 119:
| <math>F[x,y] = x * y = \int_E x(s) y(t - s)\, ds</math>|| || ||[[Convolution]]
|-
| <math>F[y] = \int_E y \ln y \,
|-
| <math>F[y] = \int_E yt\,dt</math>|| || ||[[Expected value]]
|-
| <math>F[y] = \int_E \left(t-\int_E yt\,dt\right)^2y\,dt</math>|| || ||[[Variance]]
▲|-
|}
Line 123 ⟶ 131:
* [[Transfer operator]]
* [[Fredholm operator]]
* [[Borel summation|Borel transform]]
* [[
[[Category:Mathematics-related lists|Operators]]
[[Category:Functional analysis|Operators]]
[[Category:Curves|Operators]]
|