List of mathematic operators: Difference between revisions

Content deleted Content added
No edit summary
m Reverted edit by 117.235.189.154 (talk) to last version by 2600:1700:E8B0:5C00:D026:F97F:C668:D9F5
 
(13 intermediate revisions by 13 users not shown)
Line 1:
{{Short description|none}}
In [[mathematics]], an [[operator (mathematics)|operator]] or [[transformation (mathematics)|transform]] is a [[function (mathematics)|function]] from one [[function space|space of functions]] to another. Operators occur commonly in [[engineering]], [[physics]] and mathematics. Many are [[integral operator]]s and [[differential operator]]s.
 
Line 16 ⟶ 17:
! style="background:#eafaea" colspan=4|Linear transformations
|-
| <math>L[y]=y^{(n)} \ </math>|| || ||Derivative of ''n''th order
|-
| <math>L[y]=\int_a^t y \,dt</math> ||Cartesian||<math>y=y(x)</math><br><math>x=t</math>|| Integral, area
Line 32 ⟶ 33:
| <math>L[y]=\sum y=\Delta^{-1}y</math>|| || ||[[Indefinite sum]] operator (inverse operator of difference)
|-
| <math>L[y] =-(py')'+qy \,</math>|| || ||[[Sturm–Liouville operator]]
|-
! style="background:#eafaea" colspan=4|Non-linear transformations
|-
| <math>F[y]=y^{[-1]} \ </math> || || ||[[Inverse function]]
|-
| <math>F[y]=t\,y'^{[-1]} - y\circ y'^{[-1]} </math>|| || ||[[Legendre transformation]]
Line 52 ⟶ 53:
| <math>F[y]=\int_a^t |y'| \,dt </math>|| || ||[[Total variation]]
|-
| <math>F[y]=\frac{1}{t-a}\int_a^t y\,dt </math>|| || ||[[Mean value|Arithmetic mean]]
|-
| <math>F[y]=\exp \left( \frac{1}{t-a}\int_a^t \ln y\,dt \right) </math> || || ||[[Mean value|Geometric mean]]
|-
| <math>F[y]= -\frac{y}{y'}</math>|| Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=3|[[Subtangent]]
Line 70 ⟶ 71:
| <math>F[r]= \int_a^t \sqrt { r^2 + r'^2 }\, dt</math>||Polar||<math>r=r(\phi)</math><br><math>\phi=t</math>
|-
| <math>F[x,y] = \int_a^t\sqrt[3]{y''}\, dt </math> || Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=3|[[Affine curvature|Affine arc length]]
|-
| <math>F[x,y] = \int_a^t\sqrt[3]{x'y''-x''y'}\, dt </math> || Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>
|-
| <math>F[x,y,z]=\int_a^t\sqrt[3]{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}dt</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math><br><math>z=z(t)</math>
|-
| <math>F[y]=\frac{y''}{(1+y'^2)^{3/2}}</math>||Cartesian||<math>y=y(x)</math><br><math>x=t</math>|| rowspan=4|[[Curvature]]
Line 108 ⟶ 109:
! style="background:#eafaea" colspan=4|Metric functionals
|-
| <math>F[y]=|\|y|\|=\sqrt{\int_E y^2 \, dt}</math>|| || ||[[norm (mathematics)|Norm]]
|-
| <math>F[x,y]=\int_E xy \, dt</math>|| || ||[[Inner product]]
Line 118 ⟶ 119:
| <math>F[x,y] = x * y = \int_E x(s) y(t - s)\, ds</math>|| || ||[[Convolution]]
|-
| <math>F[y] = \int_E y \ln y \, dydt</math>|| || ||[[Differential entropy]]
|-
| <math>F[y] = \int_E yt\,dt</math>|| || ||[[Expected value]]
Line 131 ⟶ 132:
* [[Fredholm operator]]
* [[Borel summation|Borel transform]]
* [[TableGlossary of mathematical symbols]]
 
[[Category:Mathematics-related lists|Operators]]
[[Category:Functional analysis|Operators]]
[[Category:Curves|Operators]]