Probability vector: Difference between revisions

Content deleted Content added
No edit summary
Fix for parallel construction.
 
(43 intermediate revisions by 30 users not shown)
Line 1:
{{Short description|Vector with non-negative entries that add up to one}}
{{redirect|Stochastic vector|the concept of a random vector|Multivariate random variable}}
In [[mathematics]] and [[statistics]], a '''probability vector''' or '''stochastic vector''' is a [[vector space|vector]] with non-negative entries that add up to one.
 
The positions (indices) of a probability vector represent the possible outcomes of a [[discrete random variable]], and the vector gives us the [[probability mass function]] of that random variable, which is the standard way of characterizing a [[discrete probability distribution]].<ref>{{citation
Here are some examples of probability vectors:
| last = Jacobs | first = Konrad
| doi = 10.1007/978-3-0348-8645-1
| isbn = 3-7643-2591-7
| mr = 1139766
| page = 45
| publisher = Birkhäuser Verlag, Basel
| series = Basler Lehrbücher [Basel Textbooks]
| title = Discrete Stochastics
| url = https://books.google.com/books?id=2Rv_i4-01JEC&pg=PA45
| volume = 3
| year = 1992}}.</ref>
 
==Examples==
<math>
Here are some examples of probability vectors:. The vectors can be either columns or rows.
x_0=\begin{bmatrix}0.5 \\ 0.25 \\ 0.25 \end{bmatrix},\;
 
*<math>
x_1=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},\;
x_0=\begin{bmatrix}0.5 \\ 0.25 \\ 0.25 \end{bmatrix},\;</math>
*</math>
x_1=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},\;</math>
*<math>
x_2=\begin{bmatrix} 0.65 \\& 0.35 \end{bmatrix},\;</math>
*<math>
x_3=\begin{bmatrix} 0.3 & 0.5 & 0.07 & 0.1 & 0.03 \end{bmatrix}.
</math>
 
==Geometric interpretation==
x_2=\begin{bmatrix} 0.65 \\ 0.35 \end{bmatrix},\;
Writing out the vector components of a vector <math>p</math> as
 
x_3:<math>p=\begin{bmatrix}0.3 p_1 \\ 0.5p_2 \\ 0.07\vdots \\ p_n 0.1 \end{bmatrix}\quad \text{or} \quad p=\begin{bmatrix} p_1 & p_2 & \cdots & 0.03p_n \end{bmatrix}.</math>
 
</math>
the vector components must sum to one:
 
:<math>\sum_{i=1}^n p_i = 1</math>
 
Each individual component must have a probability between zero and one:
 
:<math>0\le p_i \le 1</math>
 
for all <math>i</math>. Therefore, the set of stochastic vectors coincides with the [[Simplex#The standard simplex|standard <math>(n-1)</math>-simplex]]. It is a point if <math>n=1</math>, a segment if <math>n=2</math>, a (filled) triangle if <math>n=3</math>, a (filled) [[tetrahedron]] if <math>n=4</math>, etc.
 
==Properties==
* The mean of the components of any probability vector is <math> 1/n </math>.
* The shortest probability vector has the value <math> 1/n </math> as each component of the vector, and has a length of <math display="inline">1/\sqrt n</math>.
* The longest probability vector has the value 1 in a single component and 0 in all others, and has a length of 1.
* The shortest vector corresponds to maximum uncertainty, the longest to maximum certainty.
* The length of a probability vector is equal to <math display="inline">\sqrt {n\sigma^2 + 1/n} </math>; where <math> \sigma^2 </math> is the variance of the elements of the probability vector.
 
==See also==
* [[Stochastic matrix]]
* [[Dirichlet distribution]]
 
==References==
{{Reflist}}
 
{{DEFAULTSORT:Probability Vector}}
{{math-stub}}
[[Category:Probability theory]]
[[Category:Vectors (mathematics and physics)]]