Probability vector: Difference between revisions

Content deleted Content added
No edit summary
Fix for parallel construction.
 
(15 intermediate revisions by 12 users not shown)
Line 1:
{{Short description|Vector with non-negative entries that add up to one}}
''[[{{redirect|Stochastic vector]] redirects here. For |the concept of a random vector, see [[|Multivariate random variable]].''}}
 
{{Unreferenced|date=December 2009}}
In [[mathematics]] and [[statistics]], a '''probability vector''' or '''stochastic vector''' is a [[vector space|vector]] with non-negative entries that add up to one.
 
The positions (indices) of a probability vector represent the possible outcomes of a [[discrete random variable]], and the vector gives us the [[probability mass function]] of that random variable, which is the standard way of characterizing a [[discrete probability distribution]].<ref>{{citation
| last = Jacobs | first = Konrad
| doi = 10.1007/978-3-0348-8645-1
| isbn = 3-7643-2591-7
| mr = 1139766
| page = 45
| publisher = Birkhäuser Verlag, Basel
| series = Basler Lehrbücher [Basel Textbooks]
| title = Discrete Stochastics
| url = https://books.google.com/books?id=2Rv_i4-01JEC&pg=PA45
| volume = 3
| year = 1992}}.</ref>
 
==Examples==
Here are some examples of probability vectors. The vectors can be either columns or rows.
 
*<math>
x_0=\begin{bmatrix}0.5 \\ 0.25 \\ 0.25 \end{bmatrix},\;</math>
*<math>
 
x_1=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},\;</math>
*<math>
 
x_2=\begin{bmatrix} 0.65 & 0.35 \end{bmatrix},\;</math>
*<math>
 
x_3=\begin{bmatrix} 0.3 & 0.5 & 0.07 & 0.1 & 0.03 \end{bmatrix}.
</math>
 
==Geometric interpretation==
Writing out the vector components of a vector <math>p</math> as
 
Line 30 ⟶ 42:
:<math>0\le p_i \le 1</math>
 
for all <math>i</math>. TheseTherefore, twothe requirementsset show thatof stochastic vectors havecoincides a geometric interpretation: A stochastic vector is a point onwith the "far[[Simplex#The face" of astandard simplex|standard orthogonal [[<math>(n-1)</math>-simplex]]. ThatIt is, a stochasticpoint vectorif uniquely identifies<math>n=1</math>, a pointsegment onif the<math>n=2</math>, facea opposite(filled) oftriangle theif orthogonal<math>n=3</math>, cornera of(filled) the[[tetrahedron]] standardif simplex<math>n=4</math>, etc.
 
==Some Properties of <math>n</math> dimensional Probability Vectors==
* The mean of the components of any probability vector is <math> 1/n </math>.
 
* The shortest probability vector has the value <math> 1/n </math> as each component of the vector, and has a length of <math display="inline">1/\sqrt n</math>.
: Probability vectors of dimension <math>n</math> are contained within an <math>n-1</math> dimensional unit [[hyperplane]].
:* The mean of alongest probability vector ishas <math>the value 1/n </math>in a single component and 0 in all others, and has a length of 1.
:* The shortest probability vector hascorresponds theto valuemaximum <math> 1/n </math> as each component ofuncertainty, the vector, and has a lengthlongest ofto <math>1/\sqrtmaximum n</math>certainty.
:* The longestlength of a probability vector hasis theequal valueto 1<math indisplay="inline">\sqrt a{n\sigma^2 single+ component1/n} and</math>; 0where in<math> all\sigma^2 others,</math> andis hasthe avariance lengthof the elements of 1the probability vector.
: The shortest vector corresponds to maximum uncertainty, the longest to maximum certainty.
: No two probability vectors in the <math>n</math> dimensional unit hypersphere are collinear unless they are identical.
: The length of a probability vector is equal to <math>\sqrt {n\sigma^2 + 1/n} </math>; where <math> \sigma^2 </math> is the variance of the elements of the probability vector.
 
==See also==
* [[Stochastic matrix]]
* [[Dirichlet distribution]]
 
==References==
{{Reflist}}
 
{{DEFAULTSORT:Probability Vector}}
[[Category:Probability theory]]
[[Category:Vectors (mathematics and physics)]]