Content deleted Content added
Tags: Mobile edit Mobile web edit Advanced mobile edit |
→Definitions: add whitespace |
||
(8 intermediate revisions by 5 users not shown) | |||
Line 1:
{{Short description|Mathematical operation}}
'''Circular convolution''', also known as '''cyclic convolution''', is a special case of '''periodic convolution''', which is the [[convolution]] of two periodic functions that have the same period. Periodic convolution arises, for example, in the context of the [[discrete-time Fourier transform]] (DTFT). In particular, the DTFT of the product of two discrete sequences is the periodic convolution of the DTFTs of the individual sequences. And each DTFT is a [[periodic summation]] of a continuous Fourier transform function (see {{slink|
==Definitions==
Line 7 ⟶ 8:
:<math>\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\,d\tau,</math> <ref name=Jeruchim/><ref name=Udayashankara/>
where
:<math>h_{_T}(t) \ \triangleq \ \sum_{k=-\infty}^\infty h(t - kT) = \sum_{k=-\infty}^\infty h(t + kT).</math>
Then''':'''
\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\,d\tau = \int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau\ \triangleq\ (h *x_{_T})(t) = (x * h_{_T})(t).</math>|{{EquationRef|Eq.1}}}}▼
{{Equation box 1
{{math proof|title=Derivation of Eq.1|proof=▼
|indent=:|cellpadding=0|border=0|background colour=white
<math display="block">\begin{align}▼
|equation={{NumBlk||
<math>
▲\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\,d\tau = \int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau\ \triangleq\ (h *x_{_T})(t) = (x * h_{_T})(t).</math>
|{{EquationRef|Eq.1}} }} }}
\int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau
&=\sum_{k=-\infty}^\infty \left[\int_{t_o+kT}^{t_o+(k+1)T} h(\tau)\cdot x_{_T}(t - \tau)\ d\tau\right] \quad t_0 \text{ is an arbitrary parameter}\\
Line 23 ⟶ 28:
&=\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(u + kT)\right]}_{\triangleq \ h_{_T}(u)}\cdot x_{_T}(t - u)\ du\\
&=\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\ d\tau \quad \text{substituting } \tau \triangleq u
\end{align}</math>
{{Collapse bottom}}<br>
Both forms can be called ''periodic convolution''.{{efn-la
Line 69 ⟶ 75:
== See also ==
*[[
*[[Circulant matrix]]
*[[Hilbert transform#Discrete Hilbert transform|Discrete Hilbert transform]]
Line 86 ⟶ 92:
|year=1975
|publisher=Prentice-Hall
|___location=Englewood Cliffs, N.J.
|isbn=0-13-914101-4
|url-access=registration
Line 102 ⟶ 108:
|volume=6
|date=July 1991
|___location=Teaneck, N.J.
|url=https://books.google.com/books?id=QBT7nP7zTLgC&q=Priemer,+Roland
|isbn=9971-50-919-9
Line 151 ⟶ 157:
|year=1999
|publisher=Prentice Hall
|___location=Upper Saddle River, N.J.
|isbn=0-13-754920-2
|edition=2nd
|url-access=registration
|url=https://archive.org/details/discretetimesign00alan
}}
#{{cite book
|ref=McGillem
|