Content deleted Content added
m →Definitions: move Eq.1 label from right to left |
→Definitions: add whitespace |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1:
{{Short description|Mathematical operation}}
'''Circular convolution''', also known as '''cyclic convolution''', is a special case of '''periodic convolution''', which is the [[convolution]] of two periodic functions that have the same period. Periodic convolution arises, for example, in the context of the [[discrete-time Fourier transform]] (DTFT). In particular, the DTFT of the product of two discrete sequences is the periodic convolution of the DTFTs of the individual sequences. And each DTFT is a [[periodic summation]] of a continuous Fourier transform function (see {{slink|
==Definitions==
Line 8:
:<math>\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\,d\tau,</math> <ref name=Jeruchim/><ref name=Udayashankara/>
where
:<math>h_{_T}(t) \ \triangleq \ \sum_{k=-\infty}^\infty h(t - kT) = \sum_{k=-\infty}^\infty h(t + kT).</math>
Line 18:
|equation={{NumBlk||
<math>
\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\,d\tau = \int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau\ \triangleq\ (h *x_{_T})(t) = (x * h_{_T})(t).</math>
|{{EquationRef|Eq.1}} }} }}
▲{{math proof|title=Derivation of Eq.1|proof=
:<math>\begin{align}
\int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau
Line 29 ⟶ 28:
&=\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(u + kT)\right]}_{\triangleq \ h_{_T}(u)}\cdot x_{_T}(t - u)\ du\\
&=\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\ d\tau \quad \text{substituting } \tau \triangleq u
\end{align}</math>
{{Collapse bottom}}<br>
Both forms can be called ''periodic convolution''.{{efn-la
Line 75:
== See also ==
*[[
*[[Circulant matrix]]
*[[Hilbert transform#Discrete Hilbert transform|Discrete Hilbert transform]]
Line 92:
|year=1975
|publisher=Prentice-Hall
|___location=Englewood Cliffs, N.J.
|isbn=0-13-914101-4
|url-access=registration
Line 108:
|volume=6
|date=July 1991
|___location=Teaneck, N.J.
|url=https://books.google.com/books?id=QBT7nP7zTLgC&q=Priemer,+Roland
|isbn=9971-50-919-9
Line 157:
|year=1999
|publisher=Prentice Hall
|___location=Upper Saddle River, N.J.
|isbn=0-13-754920-2
|edition=2nd
|