Content deleted Content added
m →See also: convolution theorem |
→Definitions: add whitespace |
||
(23 intermediate revisions by 12 users not shown) | |||
Line 1:
{{Short description|Mathematical operation}}
'''Circular convolution''', also known as '''cyclic convolution''', is a special case of '''periodic convolution''', which is the [[convolution]] of two periodic functions that have the same period. Periodic convolution arises, for example, in the context of the [[discrete-time Fourier transform]] (DTFT). In particular, the DTFT of the product of two discrete sequences is the periodic convolution of the DTFTs of the individual sequences. And each DTFT is a [[periodic summation]] of a continuous Fourier transform function
==Definitions==
The ''periodic convolution'' of two T-periodic functions, <math>
:<math>\int_{t_o}^{t_o+T}
where
:<math>
Then''':'''
{{Equation box 1
:<math>\int_{t_o}^{t_o+T} h_T(\tau)\cdot x_T(t - \tau)\,d\tau = \int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau\ \triangleq\ (h *x_T)(t) = (x * h_T)(t).</math>{{efn-ua▼
|indent=:|cellpadding=0|border=0|background colour=white
|equation={{NumBlk||
<math>
▲
|{{EquationRef|Eq.1}} }} }}
{{Collapse top|title=Derivation of Eq.1}}
:<math>\begin{align}
&=\sum_{k=-\infty}^\infty \left[\int_{t_o}^{t_o+T} h(u + kT)\cdot \underbrace{x_{_T}(t-u-kT)}_{x_{_T}(t-u), \text{ by periodicity}}\ du\right] \quad \text{substituting } u\triangleq \tau-kT\\
\end{align}</math>
{{Collapse bottom}}<br>
}}▼
Both forms can be called ''periodic convolution''.{{efn-la
Line 31 ⟶ 37:
}}, which can also be expressed as a ''circular function''''':'''
:<math>
|[[#Oppenheim|Oppenheim and Shafer]], p 559 (8.59)
}}
Line 37 ⟶ 43:
And the limits of integration reduce to the length of function <math>h</math>''':'''
:<math>(h *
|[[#Oppenheim|Oppenheim and Shafer]], p 571 (8.114), shown in digital form
}}{{efn-la
Line 69 ⟶ 75:
== See also ==
*[[
*[[Circulant matrix]]
*[[Hilbert transform#Discrete Hilbert transform|Discrete Hilbert transform]]
== Page citations ==
Line 89 ⟶ 92:
|year=1975
|publisher=Prentice-Hall
|___location=Englewood Cliffs, N.J.
|isbn=0-13-914101-4
|url-access=registration
Line 105 ⟶ 108:
|volume=6
|date=July 1991
|___location=Teaneck, N.J.
|url=https://books.google.com/books?id=QBT7nP7zTLgC&
|isbn=9971-50-919-9
}}</ref>
Line 112 ⟶ 115:
<ref name=Jeruchim>
{{cite book
|
|
|last2=Balaban
|first2=Philip
Line 142 ⟶ 145:
#<li value="5">{{cite book
|ref=Oppenheim
|
|
|authorlink=Alan V. Oppenheim
|last2=Schafer
Line 154 ⟶ 157:
|year=1999
|publisher=Prentice Hall
|___location=Upper Saddle River, N.J.
|isbn=0-13-754920-2
|edition=2nd
|url-access=registration
|url=https://archive.org/details/discretetimesign00alan
▲}}
#{{cite book
|ref=McGillem
Line 172 ⟶ 175:
|isbn=0-03-061703-0
}}
== Further reading ==
|