Content deleted Content added
ce |
Aadirulez8 (talk | contribs) m v2.05 - Autofix / Fix errors for CW project (Link equal to linktext) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 32:
=== Functional principal component analysis ===
[[Functional principal component analysis
By the Karhunen-Loève theorem, <math>
Line 63:
</math>
Let the reference measure <math>\nu_0</math> be the Wasserstein mean <math>\mu_\oplus</math>.
Then, a ''principal geodesic subspace (PGS)'' of dimension <math>k</math> with respect to <math>\mu_\oplus</math> is a set <math>G_k = \operatorname{argmin}_{G \in \text{CG}_{\nu_\oplus, k}(\mathcal{W}_2)} K_{W_2}(G)</math>.<ref name="gpca1">{{Cite journal|last1=Bigot|first1=J.|last2=Gouet|first2=R.|last3=Klein|first3=T.|last4=López|first4=A.|date=2017|title=Geodesic PCA in the Wasserstein space by convex PCA|journal= Annales de l'
Note that the tangent space <math>T_{\mu_\oplus}</math> is a subspace of <math>L^2_{\mu_\oplus}</math>, the Hilbert space of <math>{\mu_\oplus}</math>-square-integrable functions. Obtaining the PGS is equivalent to performing PCA in <math>L^2_{\mu_\oplus}</math> under constraints to lie in the convex and closed subset.<ref name="gpca2"/> Therefore, a simple approximation of the Wasserstein Geodesic PCA is the Log FPCA by relaxing the geodesicity constraint, while alternative techniques are suggested.<ref name="gpca1"/><ref name="gpca2"/>
|