(One intermediate revision by one other user not shown)
Line 32:
=== Functional principal component analysis ===
[[Functional principal component analysis|Functional]] principal component analysis(FPCA)]] can be directly applied to the probability density functions.<ref>{{Cite journal|last1=Kneip|first1=A.|last2=Utikal|first2=K.J.|date=2001|title=Inference for density families using functional principal component analysis|journal=Journal of the American Statistical Association|volume=96|issue=454|pages=519–532|doi=10.1198/016214501753168235|s2cid=123524014 }}</ref> Consider a distribution process <math>\nu \sim \mathfrak{F}</math> and let <math>f</math> be the density function of <math>\nu</math>. Let the mean density function as <math>\mu(t) = \mathbb{E}\left[f(t)\right]</math> and the covariance function as <math>G(s,t) = \operatorname{Cov}(f(s), f(t))</math> with orthonormal eigenfunctions <math>\{\phi_j\}_{j=1}^\infty</math> and eigenvalues <math>\{\lambda_j\}_{j=1}^\infty</math>.