Feedback linearization: Difference between revisions

Content deleted Content added
m Changed incorrectly formulated sentence
 
(One intermediate revision by one other user not shown)
Line 27:
 
:<math>\begin{align}
\dot{y} = \frac{\mathrm{d}h(x)}mathord{\mathrmoperatorname{d}t} &=\frac{\mathrm{d}h(x)}{\mathrmmathord{\operatorname{d}x}\dot{xt}\\
&= \frac{\mathrm{d}partial h(x)}{\mathrm{d}partial x}f(x) + \fracdot{\mathrm{d}h(x)}{\mathrm{d}x}g(x)u\
&= \frac{\partial h(x)}{\partial x}f(x) + \frac{\partial h(x)}{\partial x}g(x)u
\end{align}</math>
 
Now we can define the [[Lie derivative]] of <math>h(x)</math> along <math>f(x)</math> as,
 
:<math>L_{f}h(x) =\triangleq \frac{\mathrm{d}partial h(x)}{\mathrm{d}partial x}f(x),</math>
 
and similarly, the Lie derivative of <math>h(x)</math> along <math>g(x)</math> as,
 
:<math>L_{g}h(x) =\triangleq \frac{\mathrm{d}partial h(x)}{\mathrm{d}partial x}g(x).</math>
 
With this new notation, we may express <math>\dot{y}</math> as,
Line 45 ⟶ 46:
Note that the notation of Lie derivatives is convenient when we take multiple derivatives with respect to either the same vector field, or a different one. For example,
 
:<math>L_{f}^{2}h(x) = L_{f}L_{f}h(x) = \frac{\mathrm{d}partial (L_{f}h(x))}{\mathrm{d}partial x}f(x),</math>
 
and
 
:<math>L_{g}L_{f}h(x) = \frac{\mathrm{d}partial (L_{f}h(x))}{\mathrm{d}partial x}g(x).</math>
 
=== Relative degree ===
Line 129 ⟶ 130:
\end{bmatrix}.</math>
 
So, with the appropriate choice of <math>kK</math>, we can arbitrarily place the closed-loop poles of the linearized system.
 
=== Unstable zero dynamics ===