Plasma parameter: Difference between revisions

Content deleted Content added
Make plasma categorization more precise
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1:
{{Distinguish|Plasma parameters}}
 
The '''plasma parameter''' is a [[dimensionless quantity|dimensionless number]], denoted by capital Lambda, {{math|Λ}}. The plasma parameter is usually interpreted to be the argument of the Coulomb logarithm, which is the ratio of the maximum impact parameter to the classical distance of closest approach in [[Coulomb collision|Coulomb scattering]]. In this case, the plasma parameter is given by:<ref>{{ cite book | last = Chen, | first = Francis F.F., | title = Introduction to Plasma Physics and Controlled Fusion, (| publisher = Springer, | ___location = New York, | year = 2006) }}</ref>
<math display="block">\Lambda = 4\pi n_\text{e}\lambda_\text{D}^3</math>
where
* {{math|''n''<sub>e</sub>}} is the [[number density]] of electrons,
* {{math|''λ''<sub>D</sub>}} is the [[Debye length]].
 
This expression is typically valid for a plasma in which ion thermal velocities are much less than electron thermal velocities. A detailed discussion of the Coulomb logarithm is available in the ''NRL Plasma Formulary'', pages 34–35.
 
Note that the word parameter is usually used in plasma physics to refer to bulk plasma properties in general: see [[plasma parameters]].
Line 16:
Since these two definitions differ only by a factor of three, they are frequently used interchangeably.
 
Often the factor of <math>\frac{4\pi}{3}</math> is dropped. When the Debye length is given by <math>\lambda_\text{D} = \sqrt{\frac{\epsilon_0varepsilon_0 kT_k_\text{B}T_\text{e}}{n_\text{e}q_\text{e}^2}}</math>, the plasma parameter is given by<ref>{{cite book | last = Miyamoto, | first = K., | title = Fundamentals of Plasma Physics and Controlled Fusion, (| ___location = Iwanami, Tokyo, | year = 1997)}}</ref>
<math display="block">N_\text{D} = \frac{{\left(\epsilon_0varepsilon_0 kT_k_\text{B} T_\text{e}\right)}^\frac{3}{/2}}{q_\text{e}^3 {n_\text{e}}^\frac{1}{/2}}</math>
= \left(\frac{k_\text{B} T_e}{n_e^{1/3}}\right)^{3/2} \left(\frac{q_e^2}{\varepsilon_0}\right)^{-3/2}</math>
where
* {{math|''ε''<sub>0</sub>}} is the [[permittivity of free space]],
* {{math|''k''<sub>B</sub>}} is the [[Boltzmann constant]],
* {{math|''q''<sub>e</sub>}} is the electron charge,
* {{math|''T''<sub>e</sub>}} is the electron temperature.
 
Confusingly, some authors define the plasma parameter as:
<math display="block">\epsilon_pvarepsilon_p = \Lambda^{-1}\ .</math>
 
== Coupling parameter ==
 
A closely related parameter is the plasma coupling <math>\Gamma</math>, defined as a ratio of the Coulomb energy to the thermal one:
<math display="block">\Gamma = \frac{E_\text{C}}{kT_k_\text{B}T_\text{e}}.</math>
 
The Coulomb energy (per particle) is
<math display="block">E_\text{C} = \frac{q_\text{e}^2}{4\pi\epsilon_0varepsilon_0\langle r \rangle},</math>
where for the typical inter-particle distance <math>\langle r \rangle</math> usually is taken the [[Wigner-SeitzWigner–Seitz radius]]. Therefore,
<math display="block">\Gamma = \frac{q_\text{e}^2}{4\pi\epsilon_0varepsilon_0 kT_k_\text{B}T_\text{e}}\sqrt[3]{\frac{4\pi n_\text{e}}{3}}.</math>
 
Clearly, up to a numeric factor of the order of unity,
<math display="block">\Gamma \sim \Lambda^{-\frac{2}{/3}}\ .</math>
 
In general, for multicomponent plasmas one defines the coupling parameter for each species ''s'' separately:
<math display="block">\Gamma_s = \frac{q_s^2}{4\pi \epsilon_0varepsilon_0 kT_sk_\text{B}T_s} \sqrt[3]{\frac{4\pi n_s}{3}}.</math>
 
Here, ''s'' stands for either electrons or (a type of) ions.
Line 47 ⟶ 48:
== The ideal plasma approximation ==
 
One of the criteria which determine whether a collection of charged particles can rigorously be termed an [[ideal plasma]] is that {{math|Λ ≫ 1}}. When this is the case, collective electrostatic interactions dominate over binary collisions, and the plasma particles can be treated as if they only interact with a smooth background field, rather than through pairwise interactions (collisions).<ref>J.D. Callen, University of Wisconsin-Madison, Draft Material for Fundamentals of Plasma Physics book: Collective Plasma Phenomena [http://homepages.cae.wisc.edu/~callen/chap1.pdf PDF]</ref> The [[equation of state]] of each species in an ideal plasma is that of an [[ideal gas]].
 
== Plasma properties and Λ ==
Line 57 ⟶ 58:
! colspan=2 | Plasma parameter magnitude
|-
! {{math|Λ ≪ 1}} ({{math|Γ ≫ 1}}) || {{math|Λ ≫ 1}} ({{math|Γ ≪ 1}})
|-
! Coupling
Line 76 ⟶ 77:
|}
 
== References ==
{{reflist}}
 
== External links ==
* [https://web.archive.org/web/20090325194948/http://wwwppd.nrl.navy.mil/nrlformulary/NRL_FORMULARY_07.pdf NRL Plasma Formulary 2007 ed.]