Fixed-point lemma for normal functions: Difference between revisions

Content deleted Content added
AWB assisted clean up
trim
Tags: Mobile edit Mobile app edit iOS app edit App section source
 
(46 intermediate revisions by 33 users not shown)
Line 1:
{{Short description|Mathematical result on ordinals}}
The '''fixed-point lemma for normal functions''' is a basic result in [[axiomatic set theory]]; it states that any [[normal function]] has arbitrarily large [[fixed point (mathematics)|fixed point]]s and can often be used to construct [[ordinal number]]s with interesting properties. A formal version and proof (using the [[Zermelo-Fraenkel axioms]]) follows.
 
The '''fixed-point lemma for normal functions''' is a basic result in [[axiomatic set theory]]; it statesstating that any [[normal function]] has arbitrarily large [[fixed point (mathematics)|fixed point]]s and(Levy can1979: often be used to construct [[ordinal number]]s with interesting propertiesp. 117). AIt formalwas versionfirst andproved proof (using theby [[Zermelo-FraenkelOswald axiomsVeblen]]) followsin 1908.
== Formal version ==
 
Let ''f'' : [[ordinal number|Ord]] → Ord be a [[normal function]]. Then for every α ∈ Ord, there exists a β ∈ Ord such that β ≥ α and ''f''(β) = β.
== Background and formal statement ==
A [[normal function]] is a [[proper class|class]] function <math>f</math> from the class Ord of [[ordinal numbers]] to itself such that:
* <math>f</math> is '''strictly increasing''': <math>f(\alpha)<f(\beta)</math> whenever <math>\alpha<\beta</math>.
* <math>f</math> is '''continuous''': for every limit ordinal <math>\lambda</math> (i.e. <math>\lambda</math> is neither zero nor a successor), <math>f(\lambda)=\sup\{f(\alpha):\alpha<\lambda\}</math>.
It can be shown that if <math>f</math> is normal then <math>f</math> commutes with [[supremum|suprema]]; for any nonempty set <math>A</math> of ordinals,
:<math>f(\sup A)=\sup f(A) = \sup\{f(\alpha):\alpha \in A\}</math>.
Indeed, if <math>\sup A</math> is a successor ordinal then <math>\sup A</math> is an element of <math>A</math> and the equality follows from the increasing property of <math>f</math>. If <math>\sup A</math> is a limit ordinal then the equality follows from the continuous property of <math>f</math>.
 
A '''fixed point''' of a normal function is an ordinal <math>\beta</math> such that <math>f(\beta)=\beta</math>.
 
The fixed point lemma states that the class of fixed points of any normal function is nonempty and in fact is unbounded: given any ordinal <math>\alpha</math>, there exists an ordinal <math>\beta</math> such that <math>\beta\geq\alpha</math> and <math>f(\beta)=\beta</math>.
 
The continuity of the normal function implies the class of fixed points is closed (the supremum of any subset of the class of fixed points is again a fixed point). Thus the fixed point lemma is equivalent to the statement that the fixed points of a normal function form a [[club set|closed and unbounded]] class.
 
== Proof ==
WeThe knowfirst step of the proof is to verify that ''<math>f''(&\gamma;) &\ge; &\gamma;</math> for all ordinals &<math>\gamma;</math> and that <math>f</math> commutes with suprema. WeGiven nowthese declareresults, inductively define an increasing sequence &lt;&alpha;<submath>''\langle\alpha_n\rangle_{n''<\omega}</submath>&gt; (''n'' &lt; &omega;) by setting &alpha;<sub>0</submath>\alpha_0 = &\alpha;</math>, and &alpha;<submath>''\alpha_{n''+1</sub>} = ''f''(&alpha;<sub>''n''\alpha_n)</submath>) for ''<math>n'' &lt; &\in\omega;,</math>. andLet define &<math>\beta; = sup\sup_{n<\omega} &lt;&alpha;<sub>''n''\alpha_n</submath>&gt;. Clearly, &beta;so &<math>\beta\ge; &\alpha;</math>. SinceMoreover, ''because <math>f''</math> commutes with [[supremum|suprema]], we have
:''<math>f''(&\beta;) = ''f''(sup \sup_{&alpha;<sub>''n''</sub> : ''n'' &lt; &\omega;} \alpha_n) </math>
:<math>\qquad = \sup_{n<\omega} f(\alpha_n)</math>
:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = sup {''f''(&alpha;<sub>''n''</sub>) : ''n'' &lt; &omega;}
:<math>\qquad = \sup_{n<\omega} \alpha_{n+1}</math>
:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = sup {&alpha;<sub>''n''+1</sub> : ''n'' &lt; &omega;}
:<math>\qquad = \beta</math>
:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = &beta;
(The last stepequality usesfollows from the fact that the sequence &lt;&alpha;<submath>''n''\langle\alpha_n\rangle_n</submath>&gt; increases). <math> \square </math>
 
As an aside, it can be demonstrated that the <math>\beta</math> found in this way is the smallest fixed point greater than or equal to <math>\alpha</math>.
 
== Example application ==
It is easily checked that theThe function ''f'' : Ord &rarr; Ord, ''f''(&alpha;''α'') = &#1488;ω<sub>&alpha;''α''</sub> is normal (see [[alephinitial numberordinal]]);. thusThus, there exists an ordinal &Theta;''θ'' such that &Theta;''θ'' = &#1488;ω<sub>&Theta;''θ''</sub>. In fact, the above lemma shows that there areis infinitelya manyclosed, unbounded class of such &Theta;''θ''.
 
==References==
{{unreferencedrefbegin}}
* {{cite book
| author = Levy, A.
| title = Basic Set Theory
| year = 1979
| publisher = Springer
| id = Republished, Dover, 2002.
| isbn = 978-0-387-08417-6
| url-access = registration
| url = https://archive.org/details/basicsettheory00levy_0
}}
*{{cite journal
| author= Veblen, O.
| authorlink = Oswald Veblen
| title = Continuous increasing functions of finite and transfinite ordinals
| journal = Trans. Amer. Math. Soc.
| volume = 9
| year = 1908
| pages = 280&ndash;292
| doi= 10.2307/1988605
| issue = 3
| jstor= 1988605
| issn= 0002-9947| doi-access = free
}}
{{refend}}
 
[[Category:SetOrdinal theorynumbers]]
[[Category:Fixed-point pointstheorems|Normal Functions]]
[[Category:Lemmas in set theory]]
[[Category:Articles containing proofs]]