Content deleted Content added
Gareth Jones (talk | contribs) add fitting section |
Adding short description: "Random process in probability theory" |
||
(36 intermediate revisions by 25 users not shown) | |||
Line 1:
{{Short description|Random process in probability theory}}
{{Refimprove|date=September 2014}}
A '''compound Poisson process''' is a continuous-time
:<math>Y(t) = \sum_{i=1}^{N(t)} D_i</math>
where, <math> \{\,N(t) : t \geq 0\,\}</math> is the counting variable of a [[Poisson process]] with rate <math>\lambda</math>, and <math> \{\,D_i : i \geq 1\,\}</math> are independent and identically distributed random variables, with distribution function ''G'', which are also independent of <math> \{\,N(t) : t \geq 0\,\}.\,</math>
When <math>
==Properties of the compound Poisson process==
:<math>\
Making similar use of the [[law of total variance]], the [[variance]] can be calculated as:
:<math>
\begin{align}
\operatorname{var}(Y(t)) &= \operatorname E(\operatorname{var}(Y(t)
&= \operatorname E(N(t)\operatorname{var}(D)) + \operatorname{var}(N(t) \operatorname E(D)) \\[5pt]
&= \operatorname{var}(D) \operatorname E(N(t)) + \operatorname E(D)^2 \operatorname{var}(N(t)) \\[5pt]
&= \operatorname{var}(D)\lambda t + \operatorname E(D)^2\lambda t \\[5pt]
&= \lambda t(\operatorname{var}(D) + \operatorname E(D)^2) \\[5pt]
&= \lambda t \operatorname E(D^2).
\end{align}
</math>
Line 27 ⟶ 28:
Lastly, using the [[law of total probability]], the [[moment generating function]] can be given as follows:
:<math>
:<math>
\begin{align}
\operatorname E(e^{sY}) & = \sum_i e^{si} \Pr(Y(t)=i) \\[5pt]
& = \sum_i e^{si} \sum_{n} \Pr(Y(t)=i
& = \sum_n \Pr(N(t)=n) \sum_i e^{si} \Pr(Y(t)=i
& = \sum_n \Pr(N(t)=n) \sum_i e^{si}\Pr(D_1 + D_2 + \cdots + D_n=i) \\[5pt]
& = \sum_n \Pr(N(t)=n) M_D(s)^n \\[5pt]
& = \sum_n \Pr(N(t)=n) e^{n\ln(M_D(s))} \\[5pt]
& = M_{N(t)}(\ln(M_D(s))) \\[5pt]
& = e^{\lambda t \left
\end{align}
</math>
Line 60 ⟶ 61:
is a [[convolution]] of measures, and the series converges [[convergence of random variables|weakly]].
==See also==
* [[Poisson process]]
* [[Poisson distribution]]
* [[Compound Poisson distribution]]
* [[Non-homogeneous Poisson process]]
* [[Campbell's formula]] for the [[moment generating function]] of a compound Poisson process
{{Stochastic processes}}
{{DEFAULTSORT:Compound Poisson Process}}
[[Category:Poisson point processes]]
[[Category:Lévy processes]]
[[
|