Taylor scraping flow: Difference between revisions

Content deleted Content added
Tags: Mobile edit Mobile web edit
Adding short description: "Type of two-dimensional corner flow"
 
(One intermediate revision by one other user not shown)
Line 1:
{{Short description|Type of two-dimensional corner flow}}
In [[fluid dynamics]], '''Taylor scraping flow''' is a type of two-dimensional [[corner flow]] occurring when one of the wall is sliding over the other with constant velocity, named after [[G. I. Taylor]].<ref>{{cite journal |last=Taylor |first=G. I. |title=Similarity solutions of hydrodynamic problems |journal=Aeronautics and Astronautics |volume=4 |year=1960 |page=214 }}</ref><ref>{{cite book |last=Taylor |first=G. I. |chapter=On scraping viscous fluid from a plane surface |title=Miszellangen der Angewandten Mechanik |series=Festschrift Walter Tollmien |year=1962 |pages=313–315 }}</ref><ref>{{cite book |last=Taylor |first=G. I. |title=Scientific Papers |editor-first=G. K. |editor-last=Bachelor |year=1958 |page=467 }}</ref>
 
Line 70 ⟶ 71:
where <math>m_z</math> and <math>n</math> are constants. The solution for the streamfunction of the flow created by the plate moving towards right is given by
 
:<math>\psi = Ur\left\{\left[1-\frac{\mathcal J_1(\theta)}{\mathcal J_1(\alpha)}\right]\sin\theta + \frac{\mathcal J_2(\theta)}{\mathcal J_1(\alpha)}\cos\theta\right\} </math>
 
where
 
:<math>\begin{align}
\mathcal J_1 &= \mathrm{sgn}(F) \int_0^\theta |F|^{1/n} \cos x\, dx,\\
\mathcal J_2 &= \mathrm{sgn}(F) \int_0^\theta |F|^{1/n} \sin x\, dx
\end{align}
</math>
Line 89 ⟶ 90:
</math>
 
where <math>C</math> is the root of <math>\mathcal J_2(\alpha)=0</math>. It can be verified that this solution reduces to that of Taylor's for Newtonian fluids, i.e., when <math>n=1</math>.
 
==References==