Content deleted Content added
→Rational functions: Add an image |
m fixed hyperlink |
||
(14 intermediate revisions by 14 users not shown) | |||
Line 1:
{{Short description|Type of function}}
In [[mathematics]], '''orthogonal functions''' belong to a [[function space]]
:<math> \langle f,g\rangle = \int \overline{f(x)}g(x)\,dx .</math>
The functions <math>f</math> and <math>g</math> are [[
Suppose <math> \{ f_0, f_1, \ldots\}</math> is a sequence of orthogonal functions of nonzero [[L2-norm|''L''<sup>2</sup>-norm]]s <math display="inline"> \
==Trigonometric functions==
{{Main article|Fourier series|Harmonic analysis}}
Several sets of orthogonal functions have become standard bases for approximating functions. For example, the sine functions {{nowrap|sin ''nx''}} and {{nowrap|sin ''mx''}} are orthogonal on the interval <math>x \in (-\pi, \pi)</math> when <math>m \neq n</math> and ''n'' and ''m'' are positive integers. For then
:<math>2 \sin \left(mx\right) \sin \left(nx\right) = \cos \left(\left(m - n\right)x\right) - \cos\left(\left(m+n\right) x\right), </math>
and the integral of the product of the two sine functions vanishes.<ref>[[Antoni Zygmund]] (1935) ''[[Trigonometric Series|Trigonometrical Series]]'', page 6, Mathematical Seminar, University of Warsaw</ref> Together with cosine functions, these orthogonal functions may be assembled into a [[trigonometric polynomial]] to approximate a given function on the interval with its [[Fourier series]].
==Polynomials==
{{main article|Orthogonal polynomials}}
If one begins with the [[monomial]] sequence <math> \left\{1, x, x^2, \dots\right\} </math> on the interval <math>[-1,1]</math> and applies the [[Gram–Schmidt process]], then one obtains the [[Legendre polynomial]]s. Another collection of orthogonal polynomials are the [[associated Legendre polynomials]].
The study of orthogonal polynomials involves [[weight function]]s <math>w(x)</math> that are inserted in the bilinear form:
Line 21:
For [[Laguerre polynomial]]s on <math>(0,\infty)</math> the weight function is <math>w(x) = e^{-x}</math>.
Both physicists and probability theorists use [[Hermite polynomial]]s on <math>(-\infty,\infty)</math>, where the weight function is <math>w(x) = e^{-x^2}</math> or <math>w(x) = e^{-
[[Chebyshev polynomial]]s are defined on <math>[-1,1]</math> and use weights <math display="inline">w(x) = \frac{1}{\sqrt{1 - x^2}}</math> or <math display="inline">w(x) = \sqrt{1 - x^2}</math>.
[[Zernike polynomial]]s are defined on the [[unit disk]] and have orthogonality of both radial and angular parts.
Line 38:
==See also==
* [[Eigenvalues and eigenvectors]]
* [[
* [[Karhunen–Loève theorem]]
* [[Lauricella's theorem]]
* [[
==References==
{{reflist}}
* George B. Arfken & Hans J. Weber (2005) ''Mathematical Methods for Physicists'', 6th edition, chapter 10: Sturm-Liouville Theory — Orthogonal Functions, [[Academic Press]].
* {{cite journal|author=Price, Justin J.|authorlink=Justin Jesse Price|title=Topics in orthogonal functions|journal=[[American Mathematical Monthly]]|volume=82|year=1975|pages=594–609|url=http://www.maa.org/programs/maa-awards/writing-awards/topics-in-orthogonal-functions|doi=10.2307/2319690}}
* [[Giovanni Sansone]] (translated by Ainsley H. Diamond) (1959) ''Orthogonal Functions'', [[Interscience Publishers]].
== External links ==
* [http://mathworld.wolfram.com/OrthogonalFunctions.html Orthogonal Functions], on MathWorld.
|