Commutation theorem for traces: Difference between revisions

Content deleted Content added
m References: task, replaced: journal= Ann. of Math. (2) → journal= Ann. of Math. |series= 2 (2) using AWB
Citation bot (talk | contribs)
Altered title. Add: authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Theorems in representation theory | #UCB_Category 17/19
 
(30 intermediate revisions by 11 users not shown)
Line 1:
{{Short description|Identifies the commutant of a specific von Neumann algebra}}
In [[mathematics]], a '''commutation theorem for traces''' explicitly identifies the [[commutant]] of a specific [[von Neumann algebra]] acting on a [[Hilbert space]] in the presence of a [[Von Neumann algebra#Weights, states, and traces|trace]].

The first such result was proved by [[F.J.Francis Joseph Murray]] and [[John von Neumann]] in the 1930s and applies to the von Neumann algebra generated by a [[discrete group]] or by the [[dynamical system]] associated with a [[ergodic theory|measurable transformation]] preserving a [[probability measure]].
 
[[ergodic theory|measurable transformation]] preserving a [[probability measure]]. Another important application is in the theory of [[unitary representation]]s of [[Haar measure|unimodular]] [[locally compact group]]s, where the theory has been applied to the [[regular representation]] and other closely related representations. In particular this framework led to an abstract version of the [[Plancherel theorem]] for unimodular locally compact groups due to [[Irving Segal]] and [[W. Forrest Stinespring|Forrest Stinespring]] and an abstract [[Plancherel theorem for spherical functions]] associated with a [[Gelfand pair]] due to [[Roger Godement]]. Their work was put in final form in the 1950s by [[Jacques Dixmier]] as part of the theory of '''Hilbert algebras'''. It was not until the late 1960s, prompted partly by results in [[algebraic quantum field theory]] and [[quantum statistical mechanics]] due to the school of [[Rudolf Haag]], that the more general non-tracial [[Tomita–Takesaki theory]] was developed, heralding a new era in the theory of von Neumann algebras.
 
It was not until the late 1960s, prompted partly by results in [[algebraic quantum field theory]] and [[quantum statistical mechanics]] due to the school of [[Rudolf Haag]], that the more general non-tracial [[Tomita–Takesaki theory]] was developed, heralding a new era in the theory of von Neumann algebras.
 
==Commutation theorem for finite traces==
Line 16 ⟶ 22:
:<math>Ja\Omega=a^*\Omega</math>
 
for ''a'' in ''M'' defines a conjugate-linear isometry of ''H'' with square the identity, ''J''<sup>2</sup> = ''I''. The operator ''J'' is usually called the '''modular conjugation operator'''.
 
It is immediately verified that ''JMJ'' and ''M'' commute on the subspace ''M'' Ω, so that<ref>{{harvnb|Bratteli|Robinson|1987|pages=81–82}}</ref>
 
:<math>JMJ\subseteq M^\prime.</math>
Line 33 ⟶ 39:
:<math> H=K\oplus iK,</math>
 
an orthogonal direct sum for the real part of the inner product. This is just the real orthogonal decomposition for the ±1 eigenspaces of ''J''.
On the other hand for ''a'' in ''M''<sub>sa</sub> and ''b'' in ''M'''<sub>sa</sub>, the inner product (''ab''Ω, Ω) is real, because ''ab'' is self-adjoint. Hence ''K'' is unaltered if ''M'' is replaced by ''M'' '.
 
Line 43 ⟶ 49:
 
===Examples===
* One of the simplest cases of the commutation theorem, where it can easily be seen directly, is that of a [[finite group]] Γ acting on the finite-dimensional [[inner product space]] <math>\ell^2(\Gamma)</math> by the left and right [[regular representation]]s λ and ρ. These [[unitary representation]]s are given by the formulas <math display="block">(\lambda(g) f)(x)=f(g^{-1}x),\,\,(\rho(g)f)(x)=f(xg)</math> for ''f'' in <math>\ell^2(\Gamma)</math> and the commutation theorem implies that <math display="block">\lambda(\Gamma)^{\prime\prime} = \rho(\Gamma)^\prime, \,\, \rho(\Gamma)^{\prime\prime}=\lambda(\Gamma)^\prime.</math> The operator ''J'' is given by the formula <math display="block"> Jf(g) = \overline{f(g^{-1})}.</math> Exactly the same results remain true if Γ is allowed to be any [[countable]] [[discrete group]].<ref name="dixmier57">{{harvnb|Dixmier|1957}}</ref> The von Neumann algebra λ(Γ)' ' is usually called the '''''group von Neumann algebra''''' of Γ.
* Another important example is provided by a [[probability space]] (''X'', μ). The [[Abelian von Neumann algebra]] ''A'' = ''L''<sup>∞</sup>(''X'', μ) acts by [[multiplication operator]]s on ''H'' = ''L''<sup>2</sup>(''X'', μ) and the constant function 1 is a cyclic-separating trace vector. It follows that <math display="block">A' = A,</math> so that ''A'' is a '''''maximal Abelian subalgebra''''' of ''B''(''H''), the von Neumann algebra of all [[bounded operator]]s on ''H''.
 
* The third class of examples combines the above two. Coming from [[ergodic theory]], it was one of von Neumann's original motivations for studying von Neumann algebras. Let (''X'', μ) be a probability space and let Γ be a countable discrete group of measure-preserving transformations of (''X'', μ). The group therefore acts unitarily on the Hilbert space ''H'' = ''L''<sup>2</sup>(''X'', μ) according to the formula <math display="block">U_g f(x) = f(g^{-1}x),</math> for ''f'' in ''H'' and normalises the Abelian von Neumann algebra ''A'' = ''L''<sup>∞</sup>(''X'', μ). Let <math display="block">H_1 = H\otimes \ell^2(\Gamma),</math> a [[tensor product]] of Hilbert spaces.<ref>''H''<sub>1</sub> can be identified with the space of square integrable functions on ''X'' x Γ with respect to the [[product measure]].</ref> The '''''group–measure space construction''''' or [[crossed product]] von Neumann algebra <math display="block"> M = A \rtimes \Gamma</math> is defined to be the von Neumann algebra on ''H''<sub>1</sub> generated by the algebra <math>A\otimes I</math> and the normalising operators <math>U_g\otimes \lambda(g)</math>.<ref>It should not be confused with the von Neumann algebra on ''H'' generated by ''A'' and the operators ''U''<sub>''g''</sub>.</ref>{{pb}} The vector <math>\Omega=1\otimes \delta_1</math> is a cyclic-separating trace vector. Moreover the modular conjugation operator ''J'' and commutant ''M'' ' can be explicitly identified.
::<math>(\lambda(g) f)(x)=f(g^{-1}x),\,\,(\rho(g)f)(x)=f(xg)</math>
 
:for ''f'' in <math>\ell^2(\Gamma)</math> and the commutation theorem implies that
 
::<math>\lambda(\Gamma)^{\prime\prime}=\rho(\Gamma)^\prime, \,\, \rho(\Gamma)^{\prime\prime}=\lambda(\Gamma)^\prime.</math>
 
:The operator ''J'' is given by the formula
 
::<math> Jf(g)=\overline{f(g^{-1})}.</math>
 
:Exactly the same results remain true if Γ is allowed to be any [[countable]] [[discrete group]].<ref name="dixmier57">{{harvnb|Dixmier|1957}}</ref> The von Neumann algebra λ(Γ)' ' is usually called the '''''group von Neumann algebra''''' of Γ.
 
* Another important example is provided by a [[probability space]] (''X'', μ). The [[Abelian von Neumann algebra]] ''A'' = ''L''<sup>∞</sup>(''X'', μ) acts by [[multiplication operator]]s on ''H'' = ''L''<sup>2</sup>(''X'', μ) and the constant function 1 is a cyclic-separating trace vector. It follows that
 
::<math>A^{\prime}=A,</math>
 
:so that ''A'' is a '''''maximal Abelian subalgebra''''' of ''B''(''H''), the von Neumann algebra of all [[bounded operator]]s on ''H''.
 
* The third class of examples combines the above two. Coming from [[ergodic theory]], it was one of von Neumann's original motivations for studying von Neumann algebras. Let (''X'', μ) be a probability space and let Γ be a countable discrete group of measure-preserving transformations of (''X'', μ). The group therefore acts unitarily on the Hilbert space ''H'' = ''L''<sup>2</sup>(''X'', μ) according to the formula
 
::<math>U_g f(x) = f(g^{-1}x),</math>
 
:for ''f'' in ''H'' and normalises the Abelian von Neumann algebra ''A'' = ''L''<sup>∞</sup>(''X'', μ). Let
 
::<math>H_1=H\otimes \ell^2(\Gamma),</math>
 
:a [[tensor product]] of Hilbert spaces.<ref>''H''<sub>1</sub> can be identified with the space of square integrable functions on ''X'' x Γ with respect to the [[product measure]].</ref> The '''''group–measure space construction''''' or [[crossed product]] von Neumann algebra
 
::<math> M = A \rtimes \Gamma</math>
 
:is defined to be the von Neumann algebra on ''H''<sub>1</sub> generated by the algebra <math>A\otimes I</math> and the normalising operators <math>U_g\otimes \lambda(g)</math>.<ref>It should not be confused with the von Neumann algebra on ''H'' generated by ''A'' and the operators ''U''<sub>''g''</sub>.</ref>
 
:The vector <math>\Omega=1\otimes \delta_1</math> is a cyclic-separating trace vector. Moreover the modular conjugation operator ''J'' and commutant ''M'' ' can be explicitly identified.
 
One of the most important cases of the group–measure space construction is when Γ is the group of integers '''Z''', i.e. the case of a single invertible
Line 83 ⟶ 57:
 
==Commutation theorem for semifinite traces==
Let ''M'' be a von Neumann algebra and ''M''<sub>+</sub> the set of [[positive operator]]s in ''M''. By definition,<ref name="dixmier57" /> a '''semifinite trace''' (or sometimes just '''trace''') on ''M'' is a functional τ from ''M''<sub>+</sub> into [0, ∞] such that
 
# <math> \tau(\lambda a + \mu b) = \lambda \tau(a) + \mu \tau(b)</math> for ''a'', ''b'' in ''M''<sub>+</sub> and λ, μ ≥ 0 (''{{visible anchor|semilinearity}}'');
# <math> \tau\left(uau^*\right) = \tau(a)</math> for ''a'' in ''M''<sub>+</sub> and ''u'' a [[unitary operator]] in ''M'' (''unitary invariance'');
# τ is completely additive on orthogonal families of projections in ''M'' (''normality'');
# each projection in ''M'' is as orthogonal direct sum of projections with finite trace (''semifiniteness'').
Line 94 ⟶ 68:
If τ is a faithful trace on ''M'', let ''H'' = ''L''<sup>2</sup>(''M'', τ) be the Hilbert space completion of the inner product space
 
:<math>M_0 = \left\{a \in M| \mid \tau\left(a^*a\right) < \infty\right\}</math>
 
with respect to the inner product
 
:<math>(a, b) = \tau\left(b^*a\right).</math>
 
The von Neumann algebra ''M'' acts by left multiplication on ''H'' and can be identified with its image. Let
 
:<math>Ja = a^*</math>
 
for ''a'' in ''M''<sub>0</sub>. The operator ''J'' is again called the ''modular conjugation operator'' and extends to a conjugate-linear isometry of ''H'' satisfying ''J''<sup>2</sup> = I. The commutation theorem of Murray and von Neumann
 
:{| border="1" cellspacing="0" cellpadding="5"
|<math>JMJ = M^\prime</math>
|}
 
is again valid in this case. This result can be proved directly by a variety of methods,<ref name="dixmier57" /><ref>{{harvnb|Takesaki|1979|pages=324–325}}</ref> but follows immediately from the result for finite traces, by repeated use of the following elementary fact:
 
:''If'' ''M''<sub>1</sub> <math> \supseteq</math> ''M''<sub>2</sub> ''are two von Neumann algebras such that'' ''p''<sub>''n''</sub> ''M''<sub>1</sub> = ''p''<sub>''n''</sub> ''M''<sub>2</sub> ''for a family of projections'' ''p''<sub>''n''</sub> ''in the commutant of'' ''M''<sub>1</sub> ''increasing to'' ''I'' ''in the [[strong operator topology]], then'' ''M''<sub>1</sub> = ''M''<sub>2</sub>.
 
==Hilbert algebras==
Line 121 ⟶ 95:
A '''Hilbert algebra'''<ref name="dixmier57" /><ref>{{harvnb|Dixmier|1977}}, Appendix A54–A61.</ref><ref>{{harvnb|Dieudonné|1976}}</ref> is an algebra <math>\mathfrak{A}</math> with involution ''x''→''x''* and an inner product (,) such that
 
# (''a'', ''b'') = (''b''*, ''a''*) for ''a'', ''b'' in <math>\mathfrak{A}</math>;
# left multiplication by a fixed ''a'' in <math>\mathfrak{A}</math> is a bounded operator;
# * is the adjoint, in other words (''xy'', ''z'') = (''y'', ''x''*''z'');
# the linear span of all products ''xy'' is dense in <math>\mathfrak{A}</math>.
 
===Examples===
* The Hilbert–Schmidt operators on an infinite-dimensional Hilbert space form a Hilbert algebra with inner product (''a'', ''b'') = Tr (''b''*''a'').
* If (''X'', μ) is an infinite measure space, the algebra ''L''<sup>∞</sup> (''X'') <math>\cap</math> ''L''<sup>2</sup>(''X'') is a Hilbert algebra with the usual inner product from ''L''<sup>2</sup>(''X'').
* If ''M'' is a von Neumann algebra with faithful semifinite trace τ, then the *-subalgebra ''M''<sub>0</sub> defined above is a Hilbert algebra with inner product (''a'', '' b'') = τ(''b''*''a'').
Line 138 ⟶ 112:
<math>\mathfrak{A}</math> on itself by left and right multiplication:
 
:<math> \lambda(a)x = ax,\, \, \rho(a)x = xa.</math>
 
These actions extend continuously to actions on ''H''. In this case the commutation theorem for Hilbert algebras states that
states that
 
:{| border="1" cellspacing="0" cellpadding="5"
|<math>\lambda(\mathfrak{A})^{\prime\prime} = \rho(\mathfrak{A})^\prime</math>
|}
 
Moreover if
::<math>M = \lambda(\mathfrak{A})^{\prime\prime}=A,</math>
:<math>M=\lambda(\mathfrak{A})^{\prime\prime},</math>
 
the von Neumann algebra generated by the operators λ(''a''), then
 
:{| border="1" cellspacing="0" cellpadding="5"
|<math>JMJ = M^\prime</math>
|}
 
Line 170 ⟶ 142:
 
The commutation theorem follows immediately from the last assertion. In particular
:<math display="block">M = \lambda(\mathfrak{AB})^{\prime\prime},''.</math>
 
The space of all bounded elements <math>\mathfrak{B}</math> forms a Hilbert algebra containing <math>\mathfrak{A}</math> as a dense *-subalgebra. It is said to be '''completed''' or '''full''' because any element in ''H'' bounded relative to <math>\mathfrak{B}</math> must actually already lie in <math>\mathfrak{B}</math>. The functional τ on ''M''<sub>+</sub> defined by
* ''M'' = λ(<math>\mathfrak{B}</math>)".
:<math display="block"> \tau(x) = (a,a)</math>
 
if ''x'' = ''λ''(''a'')*''λ''(''a'') and ∞ otherwise, yields a faithful semifinite trace on ''M'' with
The space of all bounded elements <math>\mathfrak{B}</math> forms a Hilbert algebra containing <math>\mathfrak{A}</math> as a dense *-subalgebra. It is said to be '''completed''' or '''full''' because any element in ''H'' bounded relative to <math>\mathfrak{B}</math>must actually already lie in <math>\mathfrak{B}</math>. The functional τ on ''M''<sub>+</sub> defined by
:<math> display="block">M_0 = \mathfrak{B}.</math>
 
:<math> \tau(x) = (a,a)</math>
 
if ''x'' =λ(a)*λ(a) and ∞ otherwise, yields a faithful semifinite trace on ''M'' with
 
:<math> M_0=\mathfrak{B}.</math>
 
Thus:
Line 196 ⟶ 164:
 
==References==
*{{citation|firstfirst1=O.|lastlast1=Bratteli|first2=D.W.|last2=Robinson|title=Operator Algebras and Quantum Statistical Mechanics 1, Second Edition|publisher=Springer-Verlag|year=1987|isbn=3-540-17093-6}}
*{{citation|first=A.|last=Connes|authorlink=Alain Connes|title=Sur la théorie non commutative de l’intégrationl'intégration|series=Lecture Notes in Mathematics|volume=(Algèbres d'Opérateurs)|publisher=Springer-Verlag|year=1979|pages=19–143|isbn=978-3-540-09512-5}}
*{{citation|first=J.|last = Dieudonné|authorlink=Jean Dieudonné|title=Treatise on Analysis, Vol. II |year=1976|publisher=Academic Press|isbn=0-12-215502-5}}
*{{citation|first=J.|last= Dixmier|authorlink=Jacques Dixmier|title=Les algèbres d'opérateurs dans l'espace hilbertien: algèbres de von Neumann|publisher= Gauthier-Villars |year=1957}}
*{{citation|first=J.|last= Dixmier|authorlink=Jacques Dixmier|title=Von Neumann algebras|publisher=North Holland| isbn=0-444-86308-7 |year=1981}} (English translation)
*{{citation|first=J.|last= Dixmier|authorlink=Jacques Dixmier|title=Les C*-algèbres et leurs représentations|publisher= Gauthier-Villars|year=1969|isbn= 0-7204-0762-1|url-access=registration|url=https://archive.org/details/calgebras0000dixm}}
*{{citation|first=J.|last=Dixmier|authorlink=Jacques Dixmier|title=C* algebras|publisher=North Holland|year=1977|isbn=0-7204-0762-1|url-access=registration|url=https://archive.org/details/calgebras0000dixm}} (English translation)
*{{citation|first=R.|last=Godement|authorlink=Roger Godement|title=Mémoire sur la théorie des caractères dans les groupes localement compacts unimodulaires|journal=J. Math. Pures Appl.|volume= 30|year=1951|pages=1–110}}
*{{citation|first=R.|last=Godement|authorlink=Roger Godement|title=Théorie des caractères. I. Algèbres unitaires|journal=Ann. of Math.|volume= 59|year=1954|pages=47–62|doi=10.2307/1969832|issue=1|publisher=Annals of Mathematics|jstor=1969832}}
*{{citation|firstfirst1=F.J.|lastlast1= Murray|authorlink1=F.J.Francis Joseph Murray|first2= J. |last2=von Neumann |authorlink2=John von Neumann
|title=On rings of operators| journal= Ann. of Math. |series= 2 |volume= 37 |year=1936|pages=116–229|doi=10.2307/1968693|jstor=1968693|issue=1|publisher=Annals of Mathematics}}
*{{citation|firstfirst1=F.J.|lastlast1= Murray|authorlink1=F.J.Francis Joseph Murray|first2= J. |last2=von Neumann|authorlink2=John von Neumann
|title=On rings of operators II|journal= Trans. Amer. Math. Soc. |volume= 41 |year=1937|pages= 208–248|doi=10.2307/1989620|issue=2|jstor=1989620|publisher=American Mathematical Society|doi-access=free}}
*{{citation|firstfirst1=F.J.|lastlast1= Murray|authorlink1=F.J.Francis Joseph Murray|first2= J. |last2=von Neumann |authorlink2=John von Neumann
|title=On rings of operators IV|journal= Ann. of Math. |series= 2 |volume= 44 |year=1943|pages= 716–808|doi=10.2307/1969107|jstor=1969107|issue=4|publisher=Annals of Mathematics}}
*{{citation|last=Pedersen|first=G.K.|title=C* algebras and their automorphism groups|series=London Mathematical Society Monographs|volume=14|year=1979|
publisher=Academic Press|isbn=0-12-549450-5}}
*{{citation|lastlast1=Rieffel|firstfirst1= M.A.|last2= van Daele|first2=A.|title=A bounded operator approach to Tomita–Takesaki theory|journal=Pacific J. Math.|volume= 69 |year=1977|pages= 187–221|doi=10.2140/pjm.1977.69.187|doi-access=free}}
*{{citation|last=Segal|first=I.E.| authorlink=Irving Segal|title=A non-commutative extension of abstract integration|journal=Ann. of Math. |volume=57|year=1953|pages= 401–457|doi=10.2307/1969729|issue=3|publisher=Annals of Mathematics|jstor=1969729}} (Section 5)
*{{citation|last=Simon|first= B.|authorlink=Barry Simon|title=Trace ideals and their applications|series=London Mathematical Society Lecture Note Series|volume= 35|publisher= Cambridge University Press|year= 1979|isbn = 0-521-22286-9}}
*{{citation|first=M. |last=Takesaki |title=Theory of Operator Algebras III|publisher=Springer-Verlag|isbn= 3-540-42914-X|year=20021979}}
*{{citation|first=M. |last=Takesaki |title=Theory of Operator Algebras II|publisher=Springer-Verlag|isbn=3-540-42248-X |year=2002}}
 
{{Functional analysis}}
 
{{DEFAULTSORT:Commutation Theorem}}