Content deleted Content added
Lenohka8400 (talk | contribs) ←Created page with '{{User sandbox}} <!-- EDIT BELOW THIS LINE --> ===Moduli of smoothness=== Modulus of smoothness of order n of a function f∈C[a,b] is the function <math>\omega_...' |
→Moduli of smoothness: →cite book |
||
(32 intermediate revisions by 12 users not shown) | |||
Line 1:
{{Multiple issues|
{{one source|date=March 2015}}
{{technical|date=March 2015}}
===Moduli of smoothness===▼
}}
Modulus of smoothness of order n of a function f∈C[a,b] is the function <math>\omega_n</math>:[0,∞)→ℝ defined by▼
<math>\omega_n(t,f,[a,b])=\sup_{h\in[0,t]}\sup_{x\in[a,b-nh]}|\Delta_h^n(f,x)|,</math>▼
In [[mathematics]], '''moduli of smoothness''' are used to quantitatively measure smoothness of functions. Moduli of smoothness generalise [[modulus of continuity]] and are used in [[approximation theory]] and [[numerical analysis]] to estimate errors of approximation by [[polynomial]]s and [[spline (mathematics)|spline]]s.
The modulus of smoothness of order <math>n</math> <ref>{{cite book |last=DeVore |first=Ronald A. |last2=Lorentz |first2=George G. |title=Constructive approximation |publisher=Springer |series=Grundlehren der mathematischen Wissenschaften |volume=303 |date=1993 |isbn=978-3-642-08075-3 |url=https://link.springer.com/book/9783540506270 |oclc=231539342}}</ref>
▲
▲:<math>\omega_n(t,f,[a,b])=\sup_{h\in[0,t]}\sup_{x\in[a,b-nh]} \left |\Delta_h^n(f,x) \right | \qquad \text{for} \quad 0\le t\le \frac{b-a} n,</math>
<math>\Delta_h^n(f,x_0)=\sum_{i=1}^n(-1)^{n-i}\binom{n}{i} f(x_0+ih).</math>▼
and
===Properties:===▼
where the [[finite difference]] (''n''-th order forward difference) is defined as
1. <math>\omega_n(0)=0, \omega_n(0+)=0.</math>
2. <math>\omega_n</math> is non-decreasing on <math>[0,\infty).</math>
Line 21 ⟶ 29:
3. <math>\omega_n</math> is continuous on <math>[0,\infty).</math>
4.
::<math>\omega_n(mt)\leq m^n\omega_n(t).</math>
5. <math>\omega_n(f,\lambda t)\leq (\lambda +1)^n\omega_n(f,
6. For <math>r\in \N</math>
::<math>\left \|f^{(r)} \right \|_{L_{\infty}[-1,1]}<+\infty.</math> :If <math>f\in W^r,</math> ::<math>\omega_r(t,f,[-1,1])\leq t^r \left \|f^{(r)} \right \|_{L_{\infty}[-1,1]}, t\geq 0 ▲ Here <math>\|g(x)\|_{L_{\infty}[-1,1]}=\sup_{x\in [-1,1]}|g(x)|.</math>
==Applications==
Moduli of smoothness can be used to prove estimates on the error of approximation. Due to property (6), moduli of smoothness provide more general estimates than the estimates in terms of derivatives.
For example, moduli of smoothness are used in [[Whitney inequality]] to estimate the error of local polynomial approximation. Another application is given by the following more general version of [[Jackson inequality
For every natural number <math>n</math>, if <math>f</math> is <math>2\pi</math>-periodic continuous function, there exists a [[trigonometric polynomial]] <math>T_n</math> of degree <math>\le n</math> such that
:<math>\left |f(x)-T_n(x \right )|\leq c(k)\omega_k\left(\frac{1}{n},f\right),\quad x\in[0,2\pi],</math>
where the constant <math>c(k)</math> depends on <math>k\in\N.</math>
==References==
{{reflist}}
[[Category:Approximation theory]]
[[Category:Numerical analysis]]
|