Modulus of smoothness: Difference between revisions

Content deleted Content added
mNo edit summary
 
(23 intermediate revisions by 12 users not shown)
Line 1:
{{Multiple issues|
{{User sandbox}}
{{one source|date=March 2015}}
<!-- EDIT BELOW THIS LINE -->
{{technical|date=March 2015}}
===Moduli of smoothness===
}}
Modulus of smoothness of order n
<ref>DeVore, Ronald A., Lorentz, George G., Constructive approximation, Springer-Verlag, 1993.</ref>
of a function <math>f\in C[a,b]</math> is the function <math>\omega_n:[0,\infty)\to\mathbb{R}</math> defined by
 
In [[mathematics]], '''moduli of smoothness''' are used to quantitatively measure smoothness of functions. Moduli of smoothness generalise [[modulus of continuity]] and are used in [[approximation theory]] and [[numerical analysis]] to estimate errors of approximation by [[polynomial]]s and [[spline (mathematics)|spline]]s.
:<math>\omega_n(t,f,[a,b])=\sup_{h\in[0,t]}\sup_{x\in[a,b-nh]}|\Delta_h^n(f,x)|</math> for <math>t\in[0,\frac{b-a}{n}],</math>
===Moduli of smoothness===
 
The modulus of smoothness of order <math>n</math> <ref>{{cite book |last=DeVore |first=Ronald A. |last2=Lorentz |first2=George G. |title=Constructive approximation |publisher=Springer |series=Grundlehren der mathematischen Wissenschaften |volume=303 |date=1993 |isbn=978-3-642-08075-3 |url=https://link.springer.com/book/9783540506270 |oclc=231539342}}</ref>
of a function <math>f\in C[a,b]</math> is the function <math>\omega_n:[0,\infty)\to\mathbb{R}</math> defined by
 
:<math>\omega_n(t,f,[a,b])=\sup_{h\in[0,t]}\sup_{x\in[a,b-nh]} \left |\Delta_h^n(f,x) \right |</math> \qquad \text{for} <math>t\in[quad 0,\le t\le \frac{b-a}{ n}],</math>
 
and
 
:<math>\omega_n(t,f,[a,b])=\omega_n\left(\frac{b-a}{n},f,[a,b]\right),</math> \qquad \text{for} \quad <math>t>\frac{b-a}{n},</math>
 
where we the [[finite difference]] (''n''-th order forward difference) areis defined as
 
:<math>\Delta_h^n(f,x_0)=\sum_{i=10}^n(-1)^{n-i}\binom{n}{i} f(x_0+ih).</math>
 
===Properties===
 
1. <math>\omega_n(0)=0,</math> <math>\omega_n(0+)=0.</math>
 
2. <math>\omega_n</math> is non-decreasing on <math>[0,\infty).</math>
Line 24 ⟶ 29:
3. <math>\omega_n</math> is continuous on <math>[0,\infty).</math>
 
4. <math>\omega_n(mt)\leq m^n\omega_n(t)</math>,For <math>m\in\mathbb{N}</math>, <math>t\geq0.geq 0</math> we have:
::<math>\omega_n(mt)\leq m^n\omega_n(t).</math>
 
5. <math>\omega_n(f,\lambda t)\leq (\lambda +1)^n\omega_n(f,\lambda t),</math>, for <math>\lambda>0.</math>
 
6. For <math>r\in \N</math>, denote bylet <math>W^r</math> denote the space of continuous function on <math>[-1,1]</math> that have <math>(r-1)</math>-st absolutely continuous derivative on <math>[-1,1]</math> and
::<math>\left \|f^{(r)} \right \|_{L_{\infty}[-1,1]}<+\infty.</math>
:If <math>f\in W^r,</math>, then
::<math>\omega_r(t,f,[-1,1])\leq t^r \left \|f^{(r)} \right \|_{L_{\infty}[-1,1]}, t\geq 0,</math>
:where <math>\|g(x)\|_{L_{\infty}[-1,1]}={\mathrm{ess} \sup}_{x\in [-1,1]}|g(x)|.</math>
 
===Application=Applications==
 
Moduli of smoothness can be used to prove estimates on the error of approximation. Due to property (6), moduli of smoothness provide more general estimates than the estimates in terms of derivatives.
 
For example, moduli of smoothness are used in [[Whitney inequality]] to estimate the error of local polynomial approximation. Another application is given by the following more general version of [[Jackson inequality]]:
 
For every natural number <math>n</math>, if <math>f</math> is <math>2\pi</math>-periodic continuous function, there exists a [[trigonometric polynomial]] <math>T_n</math> of degree <math>\le n</math> such that
 
:<math>\left |f(x)-T_n(x \right )|\leq c(k)\omega_k\left(\frac{1}{n},f\right),\quad x\in[0,2\pi],</math>
 
where the constant <math>c(k)</math> depends on <math>k\in\mathbb{N}.</math>
 
==References==
== Mathematical analysis / Moduli of smoothness ==
{{reflist}}
 
[[Category:Approximation theory]]
{{AFC submission|||ts=20141205065657|u=Lenohka8400|ns=2}}
[[Category:Numerical analysis]]