Modulus of smoothness: Difference between revisions

Content deleted Content added
No edit summary
 
(18 intermediate revisions by 11 users not shown)
Line 1:
{{Multiple issues|
{{AFC submission|d|context|u=Lenohka8400|ns=118|decliner=Ahecht|declinets=20141212195352|ts=20141205065657}} <!-- Do not remove this line! -->
{{one source|date=March 2015}}
{{technical|date=March 2015}}
}}
 
In [[mathematics]], '''moduli of smoothness''' are used to quantitatively measure smoothness of functions. Moduli of smoothness generalise [[modulus of continuity]] and are used in [[approximation theory]] and [[numerical analysis]] to estimate errors of approximation by [[polynomial]]s and [[spline (mathematics)|spline]]s.
<!-- EDIT BELOW THIS LINE -->
===Moduli of smoothness===
 
The modulus of smoothness of order <math>n</math> <ref>{{cite book |last=DeVore |first=Ronald A. |last2=Lorentz |first2=George G. |title=Constructive approximation |publisher=Springer |series=Grundlehren der mathematischen Wissenschaften |volume=303 |date=1993 |isbn=978-3-642-08075-3 |url=https://link.springer.com/book/9783540506270 |oclc=231539342}}</ref>
The generalization of the conception of the [[modulus of continuity]] is the modulus of smoothness. If for contionuous function the modulus of contuniuty is enough small, then the function is constant. For higher smoothness we can't use such a criterior as a modulus of continuity. The measure of smoothness of a function can be described in terms of a modulus of smoothness. It is used as a good tool for the elegant estimation of the rate of the approximation function by [[Bernstein polynomial]].
of a function <math>f\in C[a,b]</math> is the function <math>\omega_n:[0,\infty)\to\mathbb{R}</math> defined by
 
:<math>\omega_n(t,f,[a,b])=\sup_{h\in[0,t]}\sup_{x\in[a,b-nh]} \left |\Delta_h^n(f,x) \right |</math> \qquad \text{for} <math>t\in[quad 0,\le t\le \frac{b-a}{ n}],</math>
There are some problems in the approximation theory, as the characterization of the best algebraic approximation, for which the moduli of smoothness are commonly used.
 
Modulus of smoothness of order n
<ref>DeVore, Ronald A., Lorentz, George G., Constructive approximation, Springer-Verlag, 1993.</ref>
of a function <math>f\in C[a,b]</math> is the function <math>\omega_n:[0,\infty)\to\mathbb{R}</math> defined by
 
:<math>\omega_n(t,f,[a,b])=\sup_{h\in[0,t]}\sup_{x\in[a,b-nh]}|\Delta_h^n(f,x)|</math> for <math>t\in[0,\frac{b-a}{n}],</math>
 
and
 
:<math>\omega_n(t,f,[a,b])=\omega_n\left(\frac{b-a}{n},f,[a,b]\right),</math> \qquad \text{for} \quad <math>t>\frac{b-a}{n},</math>
 
where we the [[finite difference]] (''n''-th order forward difference) areis defined as
 
:<math>\Delta_h^n(f,x_0)=\sum_{i=10}^n(-1)^{n-i}\binom{n}{i} f(x_0+ih).</math>
 
===Properties===
 
1. <math>\omega_n(0)=0,</math> <math>\omega_n(0+)=0.</math>
 
2. <math>\omega_n</math> is non-decreasing on <math>[0,\infty).</math>
Line 30 ⟶ 29:
3. <math>\omega_n</math> is continuous on <math>[0,\infty).</math>
 
4. <math>\omega_n(mt)\leq m^n\omega_n(t)</math>,For <math>m\in\mathbb{N}</math>, <math>t\geq0.geq 0</math> we have:
::<math>\omega_n(mt)\leq m^n\omega_n(t).</math>
 
5. <math>\omega_n(f,\lambda t)\leq (\lambda +1)^n\omega_n(f,\lambda t),</math>, for <math>\lambda>0.</math>
 
6. For <math>r\in \N</math>, denote bylet <math>W^r</math> denote the space of continuous function on <math>[-1,1]</math> that have <math>(r-1)</math>-st absolutely continuous derivative on <math>[-1,1]</math> and
::<math>\left \|f^{(r)} \right \|_{L_{\infty}[-1,1]}<+\infty.</math>
:If <math>f\in W^r,</math>, then
::<math>\omega_r(t,f,[-1,1])\leq t^r \left \|f^{(r)} \right \|_{L_{\infty}[-1,1]}, t\geq 0,</math>
:where <math>\|g(x)\|_{L_{\infty}[-1,1]}={\mathrm{ess} \sup}_{x\in [-1,1]}|g(x)|.</math>
 
===Application=Applications==
 
Moduli of smoothness can be used to prove estimates on the error of approximation. Due to property (6), moduli of smoothness provide more general estimates than the estimates in terms of derivatives.
 
For example, moduli of smoothness are used in [[Whitney inequality]] to estimate the error of local polynomial approximation. Another application is given by the following more general version of [[Jackson inequality]]:
 
For every natural number <math>n</math>, if <math>f</math> is <math>2\pi</math>-periodic continuous function, there exists a [[trigonometric polynomial]] <math>T_n</math> of degree <math>\le n</math> such that
 
:<math>\left |f(x)-T_n(x \right )|\leq c(k)\omega_k\left(\frac{1}{n},f\right),\quad x\in[0,2\pi],</math>
 
where the constant <math>c(k)</math> depends on <math>k\in\mathbb{N}.</math>
 
==References==
where the constant <math>c(k)</math> depends on <math>k\in\mathbb{N}.</math>
{{reflist}}
 
[[Category:Approximation theory]]
== Mathematical analysis / Moduli of smoothness ==
[[Category:Numerical analysis]]